TÜV RHEINLAND ENERGY GMBH

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10}

TÜV Report: 936/21250983/B Cologne, 15 September 2022

www.umwelt-tuv.de

tre-service@de.tuv.com

TÜV Rheinland Energy GmbH and its Ambient Air Quality department in particular

is accredited for the following activities:

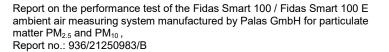
- Determination of emissions and ambient air quality affected by air pollutants and odorous substances;
- Inspection of correct installation, function and calibration of continuously operating emission measuring instruments, including data evaluation and remote emission monitoring systems;
- Measurements in combustion chambers;
- Performance testing of measuring systems for continuous monitoring of emissions and ambient air, and of
 electronic data evaluation and remote emission monitoring systems;
- Determination of the stack height and air quality forecasts for hazardous and odorous substances;
- Determination of emissions and ambient air quality affected by noise and vibration, determination of sound power levels and noise measurements at wind turbines;

according to EN ISO/IEC 17025.

The accreditation has the DAkkS registration number: D-PL-11120-02-00 and covers the scope defined in the appendix to the certificate.

Reproduction of extracts from this test report is subject to prior written consent.

TÜV Rheinland Energy GmbH D - 51105 Cologne, Am Grauen Stein, Tel: + 49 (0) 221 806-5200, fax: 0221 806-1349



Page 2 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Blank page

Page 3 of 271

Summary Overview

Palas GmbH, located in Karlsruhe, Germany, commissioned TÜV Rheinland Energy GmbH to carry out performance testing of the Fidas Smart 100 / Fidas Smart 100 E measuring system for particulate matter PM_{2.5} and PM₁₀ in accordance with the following standards:

- Standard EN 16450 Ambient air Automated measuring systems for the measurement of the concentration of particulate matter (PM₁₀; PM_{2.5}, German version dated July 2017)
- VDI Standard 4202, part 3, Automated measuring systems for air quality monitoring -Performance test, declaration of suitability and certification of measuring systems for point-related measurement of mass concentration for particulate air pollutants, February 2019
- European standard EN 12341, Ambient air Standard gravimetric measurement method for the determination of the PM₁₀ or PM_{2.5} mass concentration of suspended particulate matter; German version EN 12341:2014
- Guideline, Demonstration of Equivalence of Ambient Air Monitoring Methods, English version dated January 2010 version

The Fidas Smart 100 / Fidas Smart 100 E measuring systems determine dust concentrations using the measuring principle of scattered light measurement with a combination of a polychromatic LED and 90° scattered light detection. With the aid of a fan, ambient air is drawn in via a sampling head and passes through the sampling tube to the actual measuring instrument. The sampling tube includes a heater for the compact IADS (Intelligent Aerosol Drying System), which is designed to avoid condensation effects on the particles. The sample passes directly to the spectrometer after the sampling tube. There, the particle size is determined using the scattered light measurement technique and the mass concentration is calculated by means of an algorithm.

The Fidas Smart 100 measuring system is suitable for outdoor installation. The Fidas Smart 100 E measuring system has an extended sampling tube and is therefore intended for installation in measuring stations.

The tests were performed in the laboratory and in a twenty-month long field test.

Page 4 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

The field test, which lasted several months, was carried out at the sites listed in Table 1.

Testing at the Niederzier 2 site was conducted exclusively for PM_{10} , as for PM_{10} insufficient value pairs above 28 mg/m³ had been determined. Therefore, this location was not evaluated for $PM_{2.5}$.

Table 1: Description of the	test sites
-----------------------------	------------

	Cologne I	Niederzier I	Cologne II	Bornheim	Bonn	Niederzier II
Period	01/2021 – 03/2021	04/2021 – 06/2021	07/2021 – 11/2021	12/2021 – 03/2022	04/2022 – 05/2022	06/2022 – 08/2022
Number of measurement pairs: Test specimens	PM10: 53 PM _{2.5} : 44	PM ₁₀ : 59 PM _{2.5} : 57	PM ₁₀ : 117 PM _{2.5} : 115	PM ₁₀ : 83 PM _{2.5} : 93	PM ₁₀ : 54 PM _{2.5} : 54	PM ₁₀ : 67
Description	Urban back- ground	Industrial background	Urban back- ground	Affected by traffic	Urban back- ground	Industrial background
Classification of ambient air pollu- tion	Low to high	Average to high	Low	Average	Average	Average to high

The following table provides an overview of the equivalence tests performed.

Table 2:Results of equivalent testing (raw data)

Comparison campaigns		Slope	Axis inter- cept	All data sets W _{CM} <25 % raw data	Calibration yes/no	All data sets W _{CM} <25% cal. data
5	PM _{2.5}	0.963	0.263	no	yes	yes
6	PM10	0.899	0.712	no	yes	yes

Page 5 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10}

AMS designation:	Fidas Smart 10	0 / Fidas	Smar	t 100 E
Manufacturer:	Palas GmbH Greschbachstra 76229 Karlsruh			
Test period:	10/2020 to 09/2	2022		
Date of report:	15 September 2	2022		
Report Number:	936/21250983/	В		
Editor:	Fritz Hausberg			
Technical supervisor:	Guido Baum			
Scope of report:	Report: Appendix Manual Manual Total	pages pages with		Pages Pages Pages
				-

Page 6 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Blank page

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 7 of 271

Table of contents

SUMM	ARY OVERVIEW	3
1.	GENERAL	.13
1.1	Certification proposal	.13
1.2	Summary report on test results	.15
2.	TASK DÉFINITION	.19
2.1	Nature of the test	.19
2.2	Objective	.19
3.	DESCRIPTION OF THE AMS TESTED	.20
3.1	Measuring principle	
3.2	Functioning of the measuring system	
3.3	AMS scope and set-up	
4.	TEST PROGRAMME	
4.1.	General	.26
4.2	Laboratory testing	.26
4.3	Field test	
5.	REFERENCE MEASUREMENT METHOD	
6.	TEST RESULTS	
6.1	6.3 General requirements (VDI 4202 Part 3 February 2019)	
6.1	6.3.1 Measured value display	
6.1	6.3.2 Easy maintenance	
6.1	6.3.3 Functional check	
6.1	6.3.4 Set-up times and warm-up times	.45
6.1	6.3.5 Instrument design	
6.1	6.3.6 Unintended adjustment	
6.1	6.3.7 Data output	
6.1	6.3.8 Digital interface	
6.1	6.3.9 Data transmission protocol	
6.1	7.1 Performance requirements (EN 16450, June 2017)	
6.1	1 Measurement ranges	
6.1	2 Negative signals	
6.1	3 Zero level and detection limit (7.4.3)	
6.1	4 Flow rate accuracy (7.4.4)	
6.1	5 Constancy of sample flow rate (7.4.5)	
6.1	6 Leak tightness of the sampling system (7.4.6)	
6.1	7 Dependence of measured value on surrounding temperature (7.4.7.)	
6.1	8 Dependence of measured value (span) on surrounding temperature (7.4.7)	
6.1	9 Dependence of span on supply voltage (7.4.8)	
6.1	10 Effect of failure of mains voltage	
6.1	11 Dependence of reading on water vapour concentration (7.4.9)	
6.1	12 Zero checks (7.5.3)	
6.1	13 Recording of operational parameters (7.5.4)	.73
6.1	14 Daily averages (7.5.5)	.75
6.1	15 Availability (7.5.6)	
6.1	Method used for equivalence testing (7.5.8.4 & 7.5.8.8)	
6.1	16 Between-AMS uncertainty (7.5.8.4)	
6.1	17 Expanded uncertainty (7.5.8.5 – 7.5.8.8)	
6.1	17 Use of correction factors/terms (7.5.8.5–7.5.8.8)	
6.1	18 Maintenance interval (7.5.7)	
6.1	20 Checks of temperature sensors, pressure and/or humidity sensors	
7.	RECOMMENDATIONS FOR USE IN PRACTICE	

Page 8 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

8.	BIBLIOGRAPHY	128
9.	APPENDICES	129

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 9 of 271

List of tables

Table 1:	Description of the test sites	4
Table 2:	Results of equivalent testing (raw data)	4
Table 3:	Fidas Smart 100 E at zero point tests	
Table 4:	Fidas Smart 100 E with MonoDust 1500 tests	.23
Table 5:	Matrix showing the effect of peak shifts on mass concentrations	
	(PM_ENVIRO_0005-25) for PM _{2.5}	.27
Table 6:	Matrix showing the effect of peak shifts on mass concentrations	
	(PM_ENVIRO_0005-10) for PM ₁₀	
Table 7:	Field test sites	
Table 8:	Ambient conditions at the field test sites as daily averages	
Table 9:	Removed value pair in line with Gubbs, reference PM _{2.5}	.40
Table 10:	Filter materials used	
Table 11:	Zero level and detection limit PM _{2.5}	
Table 12:	Zero level and detection limit PM ₁₀	.54
Table 13:	Flow rate accuracy at -20 °C and +50 °C	.56
Table 14:	Performance characteristics for the overall flow rate measurement (daily	
	average)	.58
Table 15:	Dependence of zero point on surrounding temperature, deviation in μ g/m ³ ,	
	average of three measurements, PM _{2.5}	.63
Table 16:	Dependence of zero point on surrounding temperature, deviation in μ g/m ³ ,	
	average of three measurements, PM ₁₀	
Table 17:	Dependence of measured value on surrounding temperature, deviation in %	
	average from three measurements for PM _{2.5}	
Table 18:	Dependence of measured value on surrounding temperature, deviation in %	
	average from three measurements for PM ₁₀	
Table 19:	Influence of mains voltage on measured value, deviation in % for PM _{2.5}	
Table 20:	Influence of mains voltage on measured value, deviation in % for PM ₁₀	.67
Table 21:	Dependence of reading on water vapour concentration, deviation in μ g/m ³ ,	
	PM _{2.5}	.70
Table 22:	Dependence of reading on water vapour concentration, deviation in μ g/m ³ ,	
	PM ₁₀	
Table 23:	Zero checks, PM _{2.5}	
Table 24:	Zero checks, PM ₁₀	
Table 25:	Determination of the availability	
Table 26:	Between-AMS uncertainty ubs,AMS	
Table 27:	Overview of equivalence testing, PM _{2.5}	
Table 28:	Overview of equivalence testing, PM ₁₀	
Table 29:	Between RM uncertainty u _{bs,RM} , PM _{2.5} 1	
Table 30:	Between RM uncertainty ubs,RM, PM ₁₀ 1	
Table 31:	Summary of equivalence test results after intercept and slope correction, PM	
T-1-1-00	1	19
Table 32:	Summary of equivalence test results after intercept and slope correction, PM	
		21

Page 10 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

List of figures

Figure 1:	Measurement of scattered light signal at one single particle. Amplitude and	
	signal length are being measured	
Figure 2:	Functional diagram, Fidas Smart 100	
Figure 3:	Fidas Smart 100 with weatherproof housing	
Figure 4:	Fidas Smart 100 without weatherproof housing	22
Figure 5:	MonoDust 1500	22
Figure 6:	Fidas 100 E	
Figure 7:	Weather sensor on the sampling tube	25
Figure 8:	PM _{2.5} concentrations (reference) at the Cologne I location	30
Figure 9:	PM ₁₀ concentrations (reference) at the Cologne I location	31
Figure 10:	PM _{2.5} concentrations (reference) at the Niederzier I location	31
Figure 11:	PM ₁₀ concentrations (reference) at the Niederzier I location	
Figure 12:	PM _{2.5} concentrations (reference) at the Cologne II location	
Figure 13:	PM ₁₀ concentrations (reference) at the Cologne II location	
Figure 14:	PM _{2.5} concentrations (reference) at the Bornheim location	
Figure 15:	PM ₁₀ concentrations (reference) at the Bornheim location	
Figure 16:	PM _{2.5} concentrations (reference) at the Bonn location	
Figure 17:	PM_{10}^{10} concentrations (reference) at the Bonn location	
Figure 18:	PM ₁₀ concentrations (reference) at the Niederzier II location	
Figure 19:	Field test site Cologne	
Figure 20:	Field test site Niederzier (AMS in the middle)	
Figure 21:	Field test site Bornheim	
Figure 22:	Field test site Bonn	
Figure 23:	Fidas Smart 100 with measured value display	
Figure 24:	Flow rate of tested instrument SN 12248	
Figure 25:	Flow rate of tested instrument SN 12250	
Figure 26:	Results of parallel measurements, all sites, PM _{2.5}	
Figure 27:	Results of parallel measurements, all sites, PM ₁₀	
Figure 28:	Results of parallel measurements, Cologne I, PM _{2.5}	
Figure 29:	Results of parallel measurements, Cologne I, PM ₁₀	
Figure 30:	Results of parallel measurements, Niederzier I, PM _{2.5}	
Figure 31:	Results of parallel measurements, Niederzier I, PM ₁₀	
Figure 32:	Results of parallel measurements, Cologne II, PM _{2.5}	
Figure 33:	Results of parallel measurements, Cologne II, PM ₁₀	
Figure 34:	Results of parallel measurements, Bornheim, PM _{2.5}	
Figure 35:	Results of parallel measurements, Bornheim, PM ₁₀	
Figure 36:	Results of parallel measurements, Bonn, PM _{2.5}	
Figure 37:	Results of parallel measurements, Bonn, PM ₁₀	
Figure 38:	Results of parallel measurements, Niederzier II, PM ₁₀	
Figure 39:	Reference vs. tested instrument, SN 12248, all sites, PM _{2.5}	
Figure 40:	Reference vs. tested instrument, SN 12250, all sites, PM _{2.5}	
Figure 41:	Reference vs. tested instrument, SN 12248, Cologne I, PM _{2.5}	
Figure 42:	Reference vs. tested instrument, SN 12250, Cologne I, PM _{2.5}	
Figure 43:	Reference vs. tested instrument, SN 12248, Niederzier I, PM _{2.5}	
Figure 44:	Reference vs. tested instrument, SN 12250, Niederzier I, PM _{2.5}	
Figure 45:	Reference vs. tested instrument, SN 12248, Cologne II, PM _{2.5}	
Figure 45:	Reference vs. tested instrument, SN 12250, Cologne II, PM _{2.5}	
Figure 40.	Reference vs. tested instrument, SN 12248, Bornheim, PM _{2.5}	
Figure 47.	Reference vs. tested instrument, SN 12240, Bornheim, PM _{2.5}	
•		
Figure 49:	Reference vs. tested instrument, SN 12248, Bonn, PM _{2.5}	100

Page 11 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Figure 50: Figure 51: Figure 52: Figure 53: Figure 54: Figure 55: Figure 56: Figure 57: Figure 58: Figure 59: Figure 60: Figure 61: Figure 62:	Reference vs. tested instrument, SN 12250, Bonn, PM2.5108Reference vs. tested instrument, SN 12248, all sites, PM10109Reference vs. tested instrument, SN 12250, all sites, PM10109Reference vs. tested instrument, SN 12250, all sites, PM10109Reference vs. tested instrument, SN 12248, Cologne I, PM10110Reference vs. tested instrument, SN 12250, Cologne I, PM10110Reference vs. tested instrument, SN 12250, Cologne I, PM10111Reference vs. tested instrument, SN 12250, Niederzier I, PM10111Reference vs. tested instrument, SN 12250, Niederzier I, PM10111Reference vs. tested instrument, SN 12248, Cologne II, PM10112Reference vs. tested instrument, SN 12248, Cologne II, PM10112Reference vs. tested instrument, SN 12250, Cologne II, PM10113Reference vs. tested instrument, SN 12250, Cologne II, PM10113Reference vs. tested instrument, SN 12248, Bornheim, PM10113Reference vs. tested instrument, SN 12250, Bornheim, PM10113Reference vs. tested instrument, SN 12250, Bornheim, PM10114Reference vs. tested instrument, SN 12250, Bornheim, PM10114
Figure 61: Figure 62: Figure 63: Figure 64: Figure 65: Figure 66: Figure 67:	Reference vs. tested instrument, SN 12248, Bonn, PM10

Page 12 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Blank page

TÜV Rheinland Energy GmbH Air Pollution Control

Page 13 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

1. General

1.1 Certification proposal

Based on the positive results obtained, the following recommendation on the announcement of the AMS as a certified system is put forward:

AMS designation:

Fidas Smart 100 / Fidas Smart 100 E for particulate matter PM_{2.5} und PM₁₀

Manufacturer:

Palas GmbH, Karlsruhe

Field of application:

For continuous ambient air measurement of fine dust, fractions $PM_{2.5}$ and PM_{10} , in stationary use

Measuring ranges during performance testing:

Component	Certification range	Unit
PM _{2.5}	0–20 000	µg/m³
PM ₁₀	0–20 000	µg/m³

Software version:

1.0.11

Restrictions:

None

Notes:

- 1. The measuring system is available in a version for outdoor installation (Fidas Smart 100) as well as in a version for installation in a measuring station (Fidas Smart 100 E).
- 2. The PM_ENVIRO_0005-25 algorithm is used to determine the PM_{2.5} component and the PM_ENVIRO_0005-10 algorithm is used to determine the PM₁₀ component.
- 3. The test report on the performance test is available online at www.qal1.de.

Test Report:

TÜV Rheinland Energy GmbH, Cologne Report no. 936/21250983/B dated 15 September 2022

Page 14 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Blank page

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

1.2 Summary report on test results

Summary of test results in accordance with standard EN 16450

Performance criterion	Requirement	Test result	Satis- fied	Page
1 Measurement ranges	0 μg/m ³ to 1000 μg/m ³ as a 24- hour average value 0 μg/m ³ to 10,000 μg/m ³ as a 1- hour average value, if applicable	The upper limit of the measuring range is at 20,000 μg/m³.	yes	51
2 Negative signals	Shall not be suppressed	While the AMS is able to display negative readings directly and via the various outputs, they should not be expected given the instrument de- sign and the measurement principle applied.	yes	52
3 Zero level and detection limit (7.4.3)	Zero level: ≤ 2.0 µg/m³ Detection limit: ≤ 2.0 µg/m³	The zero level and the detection limit were determined to be 0.00 μ g/m ³ for both PM2.5 and PM10 for both systems.	yes	53
4 Flow rate accuracy (7.4.4)	≤ 2.0%	The relative difference determined for the mean of the measuring re- sults at flow rates at -20°C and at 50°C did not exceed -1.7%.	yes	55
5 Constancy of sample flow rate (7.4.5)	≤ 2.0% sampling flow (averaged flow) ≤ 5% rated flow (instantaneous flow)	All determined instantaneous values deviate less than 3.9 %; all averaged values deviate less than -0.59 % from the nominal value.	yes	57
6 Leak tightness of the sam- pling system (7.4.6)	≤ 2.0% of sample flow rate	The leak test procedure specified by the system manufacturer proved to be suitable for monitoring the system tightness in the test.	yes	60
7 Dependence of measured value on surrounding tempera- ture (7.4.7.)	≤ 2.0 μg/m³	The tested ambient temperature range is -20 °C to 50 °C. The maximum deviation from the mean measured value at TS,n was 0.0 μ g/m ³ for PM2.5 and for PM10.	yes	62
8 Dependence of measured value (span) on surrounding temperature (7.4.7)	≤ 5% from the value at the nomi- nal test temperature	The tested ambient temperature range is -20 °C to 50 °C. The maxi- mum deviation from the mean meas- ured value at 20 °C was 3.1 % for PM2.5 and 0.5 % for PM10.	yes	64

Page 15 of 271

Page 16 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Performance criterion	Requirement	Test result	Satis- fied	Page
9 Dependence of span on supply voltage (7.4.8)	≤ 5 % of the value at the nomi- nal test voltage	No deviations of more than -0.8 % for PM2.5 and -0.1 % for PM10 at the extreme values related to the mean value at 230 V, could be de- tected by mains voltage changes.	yes	66
10 Effect of failure of mains voltage	Instrument parameters shall be secured against loss. On return of the mains voltage the in- strument shall automatically re- sume functioning.	All instrument parameters are se- cured against loss. On return of mains voltage, the instrument re- turns to normal operating mode and automatically resumes meas- uring.	yes	68
11 Dependence of reading on water vapour concentration (7.4.9)	≤ 2.0 μg/m³ in zero air	The largest difference determined between the measured values at 40 % and at 90 % relative humidity was 0.0 µg/m ³ .	yes	69
12 Zero checks (7.5.3)	Absolute value ≤ 3.0 µg/m³	The absolute measured value de- termined at the zero point did not exceed 0.0 μg/m³.	yes	71
13 Recording of operational parameters (7.5.4)	Measuring systems shall be able to provide data of opera- tional states for telemetric transmission of – at minimum – the following parameters: Flow rate Pressure drop over sample fil- ter (if relevant) Sampling time Sampling volume (if relevant); Mass concentration of relevant PM fraction(s) Ambient temperature Exterior air pressure Air temperature in measuring section Temperature of sampling inlet if heated inlet is used	The AMS allows for comprehensive telemetric monitoring and control of the measuring system via various paths. The instrument provides op- erating statuses and all relevant parameters.	yes	73
14 Daily averages (7.5.5)	The AMS shall allow for the formation of daily averages or values.	It is possible to form valid daily av- erages.	yes	75
15 Availability (7.5.6)	At least 90%.	Availability was at 100% for both instruments.	yes	76
16 Between-AMS uncertainty (7.5.8.4)	≤ 2.5 μg/m³	At no more than 1.6 μg/m ³ the un- certainty between the test speci- men ubs remained well below the permissible maximum of 2.5 μg/m ³ .	yes	79

Air Pollution Control

Page 17 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Performance criterion	Requirement	Test result	Satis- fied	Page
17 Expanded uncertainty (7.5.8.5 – 7.5.8.8)	≤ 25% at the level of the rele- vant limit value related to the 24-hour average results (after calibration where neces- sary, see 7.5.8.5)	The determined uncertainties WAMS are above the defined expanded rel- ative uncertainty Wdqo of 25% for particulate matter for all considered data sets without applying correction factors. As for both PM2.5 and PM10 the axis intercept is significantly dif- ferent from 0 and the slope is signifi- cantly different from 1, the applica- tion of correction factors according to "Item 6.1 17 Application of cor- rection factors/terms" shall be made accordingly. After applying correction factors and terms, all considered da- ta sets are below the specified ex- panded relative uncertainty Wdqo of 25%.		94
17 Use of correction fac- tors/terms (7.5.8.5–7.5.8.8)	After the calibration: ≤ 25% at the level of the rele- vant limit value related to the 24-hour average results	After the use of correction factors, the candidate systems met the re- quirements for data quality of air quality monitors for all data sets.	yes	116
18 Maintenance interval (7.5.7)	At least 14 d	The maintenance interval is 1 year.	yes	123
6.1 19 Automatic diagnostic check (7.5.4)	Shall be possible for the AMS	The instrument provides all features described in the operation manual. The current operating status is continuously monitored and any issues will be flagged via a series of different warning messages. Data recording includes all monitored parameters.	d in the operation manual. ent operating status is con- monitored and any issues agged via a series of differ- ing messages. Data record-	
20 Checks of temperature sensors, pressure and/or humidity sensors	Shall be checked for the AMS to be within the following crite- ria ± 2 °C ± 1 kPa ± 5 % RH	It is possible to check and adjust the sensors for determining ambient temperature, ambient pressure and relative humidity on site. The sen- sors' deviations remained within the required ranges.	yes	125

Page 18 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Blank page

Page 19 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

2. Task definition

2.1 Nature of the test

Palas GmbH commissioned TÜV Rheinland Energy GmbH with performance testing of the Fidas Smart 100 / Fidas Smart 100 E air quality monitor for the measurement of particulate matter in ambient air, fraction $PM_{2.5}$ and PM_{10} .

2.2 Objective

The air quality monitor is designed to determine suspended particulate matter $PM_{2.5}$ and PM_{10} in ambient air in the concentration range between 0 and 20,000 µg/m³.

The measuring system determines the suspended fine dust concentration by means of scattered light measurement.

The test was performed on the basis of the following standards:

- Standard EN 16450 Ambient air Automated measuring systems for the measurement of the concentration of particulate matter (PM₁₀; PM_{2.5}), German version dated July 2017
- VDI Standard 4202, part 3, Automated measuring systems for air quality monitoring -Performance test, declaration of suitability and certification of measuring systems for point-related measurement of mass concentration for particulate air pollutants, February 2019
- European standard EN 12341, Ambient air Standard gravimetric measurement method for the determination of the PM₁₀ or PM_{2,5} mass concentration of suspended particulate matter; German version EN 12341:2014
- Guideline "Demonstration of Equivalence of Ambient Air Monitoring Methods", English version dated January 2010 version

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

3. Description of the AMS tested

3.1 Measuring principle

The Fidas Smart 100 / Fidas Smart 100 E measuring system is a measuring device for the determination of particulate matter in ambient air. The concentration of suspended particulate matter is determined with an optical aerosol spectrometer, which determines the particle size via scattered light analysis on the individual particle according to Lorenz-Mie. A fan sucks ambient air through the sample inlet through a heated sampling tube directly to the spectrometer.

The particles move separately through an optically differentiated measuring volume that is homogeneously illuminated by a polychromatic LED light source. Each particle generates a scattered light pulse that is detected at an angle of 85° to 90°. The number of particles is determined by the number of scattered light signals. The intensity of the measured scattered light signal is a measure of the particle diameter. The signal length is measured as well.

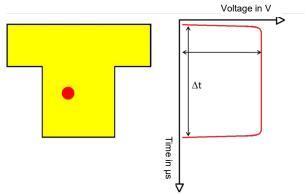
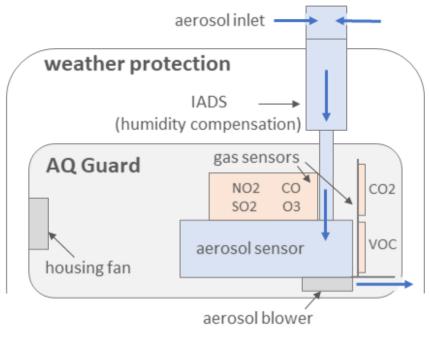


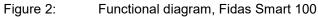
Figure 1: Measurement of scattered light signal at one single particle. Amplitude and signal length are being measured

Due to the specific T-aperture optics with simultaneous signal length measuring, border zone errors are eliminated. The term 'border zone error' refers to the merely partial illumination of particles at the end of the measuring range. This partial illumination results in the particles being classified as smaller in size than they actually are. Via the T-aperture, particles flying only through the arm of the T (shorter signal length) differ from those flying through the middle part of the T (longer signal length). The latter are completely illuminated in the upper section. Thus, border zone errors are eliminated.

3.2 Functioning of the measuring system

The particle sample passes through the sample inlet at a flow rate of 1.0 l/min (operation conditions) and is led into the sampling line which connects the sampling head to the aerosol sensor. The compact IADS (Intelligent Aerosol Drying System) moisture compensation module is used in order to avoid the possible effects of condensation, especially when ambient air humidity is high. The temperature of the IADS is controlled depending on the ambient temperature and humidity (measured by the system). The maximum heat capacity of the compact IADS is 40 W. After passing through the compact IADS module the particle sample is led to the aerosol sensor where the actual measuring is performed.


The measuring system Fidas Smart 100 is equipped with an integrated weather sensor for temperature, humidity and pressure. The sensor is supplied with outside air via the housing fan.


In addition, the measuring device was equipped with gas sensors for measuring CO_2 and VOC (volatile organic compounds). These sensors were not part of the test.

Page 21 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

3.3 AMS scope and set-up

The measuring system is designed to be installed outside without any additional weather protection. The tested AMS consists of the Fidas Smart 100 measuring system with weatherproof housing. The system requires only a 12-volt power supply to operate.

Figure 3: Fidas Smart 100 with weatherproof housing

Page 22 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Figure 4: Fidas Smart 100 without weatherproof housing

The measuring system can be operated either directly via the touchscreen on the front of the device (only accessible when the weatherproof housing is removed) or remotely via data interfaces via Ethernet, WiFi or mobile network (SIM card required). The user can retrieve measurement data and system information, change parameters and perform functionality tests of the measuring system.

A zero filter is mounted on the instrument inlet for the purpose of external zero checks. The use of this filter allows the provision of PM-free air. To test and if necessary adjust the sensitivity of the particle sensor, the instrument shall be supplied with particles of a defined size (MonoDust 1500). The particle size distribution of this dust is monodisperse and the peak in the distribution of the raw data, which has been generated in the instrument, shall lie at the target channel given on the Monodust calibration certificate (typically 140.1). If the peak deviates from this value, the value can be adjusted. Due to this adjustment at one particle size, the sensitivity of the measuring system for all particle sizes is adjusted automatically as the instrument operates with only one A/D converter.

Figure 5: MonoDust 1500

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 23 of 271

Fidas Smart 100 E:

Optionally, the measuring system is also available with an extended sampling tube for indoor installation (e.g. measuring station with roof duct). Here, the extended sampling tube is mounted between the sampling head and the heated moisture compensation module, IADS. The weather sensor for determining air temperature and humidity is mounted on the sampling tube to determine the operating conditions outside the measuring station. Here, the same sensor was used that is otherwise used for the measuring system.

The extensions are 1.2 m in length and consist of an outer protective tube (diameter 60 mm) and the actual aerosol tube (diameter 26 mm). To ensure that the extended sampling tube did not have a negative effect on the performance of the measuring equipment, tests were carried out in the laboratory in the climatic chamber. For this purpose, the measuring instrument was installed in a climatic cabinet with a roof duct. This climatic cabinet (tempered to approx. 20 °C) was positioned in the climatic chamber. The climatic chamber was set to 38°C and 90 % relative humidity. This simulated operation in an air-conditioned measuring container in hot and humid ambient conditions.

Here, no negative influence could be determined through the use of the extended sampling tube.

	SN 13418		SN 13419		
	Measured value	Measured value	Measured value	Measured value	
	PM _{2.5}	PM ₁₀	PM _{2.5}	PM ₁₀	
	µg/m³	µg/m³	µg/m³	µg/m³	
20°C, 50 % rel. Humidity	0.0	0.0	0.0	0.0	
38°C, 80 % rel. Humidity	0.0	0.0	0.0	0.0	

Table 3:Fidas Smart 100 E at zero point tests

Table 4:Fidas Smart 100 E with MonoDust 1500 tests

	SN 13418		SN 13419	
	Measured value PM _{2.5}	Measured value PM ₁₀	Measured value PM _{2.5}	Measured value PM ₁₀
	µg/m³	µg/m³	µg/m³	µg/m³
20°C, 50 % rel. Humidity	25.14	39.98	25.14	39.98
38°C, 80 % rel. Humidity	25.07	39.99	25.21	39.97

Page 24 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

TÜV Rheinland Energy GmbH Air Pollution Control

Figure 6: Fidas 100 E

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 25 of 271

Figure 7: Weather sensor on the sampling tube

Software versions:

Software version 1.0.4 was installed on the systems during the test. In the meantime, the manufacturer has further developed the software version. Bugs have been fixed and functional enhancements, e.g. in the network settings, have been implemented. Further functional enhancements are not relevant for the variant to be certified.

The current software version of the AMS is therefore: 1.0.11. The intermediate versions 1.0.5. 1.0.6, 1.0.7, 1.0.8, 1.0.9 and 1.0.10 can also be used. The software changes were classified as type 0 changes.

Note on visual material used in the test report

At the beginning of the test, the manufacturer intended to market the measuring system under the name "AQGuard". In the course of testing, the manufacturer decided to market the measuring system under the name "Fidas Smart System" with the system variants "Fidas Smart 100" and "Fidas Smart 100 E". Therefore, corresponding "AQGuard" markings are still visible on the test instruments.

Page 26 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

4. Test programme

4.1. General

Performance testing was carried out using two identical instruments with the following serial numbers:

System 1: 12248 System 2: 12250

Testing was performed with software version 1.0.4.

4.2 Laboratory testing

Performance testing was carried out using two identical instruments with the following serial numbers:

System 1: 12248 System 2: 12250

The tests with the extended sampling tube were performed on two identical instruments with the serial numbers (see pg. 23 and 24):

System 1: 13418 System 2: 13419

Standard [9] specifies the following test programme for the laboratory test:

- Readings
- Negative signals
- Zero level and detection limit
- Flow rate accuracy
- Water tightness of the sampling system
- Dependence of the zero point on the ambient temperature
- Dependence of the reading on the ambient temperature
- Effect of mains voltage on the reading
- Effect of failure of mains voltage
- Effect of humidity on the reading

The following devices were used to determine the performance characteristics during the laboratory tests.

- Climatic chamber (temperature range –20°C to +50°C, accuracy better than 1°C).
- Isolating transformer
- 1 mass flow meter Model 4043 (manufacturer: TSI)
- 1 reference flow meter, type BIOS Met Lab 500 (manufacturer: Mesa Lab)
- Zero filter for external zero checks
- MonoDust 1500 for checking the sensitivity

Page 27 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

The measured values were recorded internally. The set of raw data was downloaded and evaluated in Excel.

Sensitivity testing was performed with monodisperse dust (MonoDust 1500). When this test dust is applied, a peak in the size distribution is to be expected in channel 140.1. To allow for quantification of deviations from the classification, data sets from the field test served as a basis for calculating the potential effect of peak shifts of up to ± 3 channels on measured values for PM.

In the event of a peak shift in the 140.1 channel, there will be a shift in all other channels by the same number of raw data channels. This is linked to the use of an A/D converter which possesses a logarithmic characteristic. If the entire raw data distribution is now hypothetically shifted by +- 3 channels and the PM values are thus recalculated, the effect on the PM measured values can thus be determined. To this effect, the actual measured PM values were plotted against those recalculated from the hypothetically shifted raw data distribution in an XY plot, and a linear regression line was calculated between these values. The following matrix presents the results of this calculation.

Table 5:	Matrix showing the effect of peak shifts on mass concentrations (PM_ENVIRO_0005-
	25) for PM _{2.5}

Channel shift	Slope	Axis intercept
-3	1.086	0.03889
-2	1.056	0.025
-1	1.029	0.0122
0	1	0
1	0.973	-0.00785
2	0.945	-0.0197
3	0.918	-0.031

Table 6: Matrix showing the effect of peak shifts on mass concentrations (PM_ENVIRO_0005-10) for PM_{10}

Channel shift	Slope	Axis intercept
-3	1.023	0.28767374
-2	1.012	0.21356596
-1	0.996	0.1441563
0	1	0
1	1.001	-0.16967074
2	0.994	-0.31094192
3	0.973	-0.18567619

Page 28 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

If, for example, there is a shift of -3 channels when using the PM_ENVIRO_0005_25 method, the actual PM values are related to the hypothetically determined PM values as follows:

 $PM_{2.5}$ _actual=1.086* $PM_{2.5}$ _hypothetical+0.03889 PM_{10} _actual=1.023* PM_{10} _hypothetical+0.28107.

A shift of -3 channels means, e.g. for $PM_{2.5}$, that the particle size is determined too small, which leads to the $PM_{2.5}$ value being measured too low by a factor of 1.086.

For the purpose of evaluation, a hypothetical measured value for $PM_{2.5}$ of 25 µg/m³ and for PM_{10} of 40 µg/m³ was then used for the ideal case (peak exactly in channel 140.1) and then, depending on the peak shift, the corresponding concentration value to be expected was determined according to the matrix above.

Chapter 6 summarizes the results of the laboratory tests.

Page 29 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

4.3 Field test

Performance testing was carried out using two identical instruments with the following serial numbers:

System 1: 12248 System 2: 12250

Standard [9] specifies the following test programme for the field test:

- Constancy of sample volumetric flow
- Zero checks
- Recording of operational parameters
- Daily values/daily averages
- Availability
- Between-AMS uncertainty
- Expanded uncertainty
- Maintenance interval/period of unattended operation
- Automatic diagnostic check
- Checks of temperature sensors, pressure and/or humidity sensors

The following instruments were used during the field test.

- Measurement container provided by TÜV Rheinland, air-conditioned to about 20 °C
- Weather station for recording meteorological parameters such as air temperature, air pressure, air humidity, wind speed, wind direction as well as rainfall
- 4 reference measuring systems SEQ47/50-RV for PM_{2.5} and PM₁₀ according to point 5; 2 LVS3 for PM_{2.5} (only field test Cologne 1, here two LVS3 were used for PM_{2.5} and 2 SEQ47/50-RV for PM₁₀)
- 1 mass flow meter Model 4043 (manufacturer: TSI)
- Zero filter for external zero checks
- MonoDust 1500 for checking the sensitivity

In the field test, two Fidas Smart 100 systems and four reference instruments (2 for $PM_{2.5}$ and 2 for PM_{10}) were running simultaneously. The SEQ47/50-RV reference instruments automatically change filters every 24 h. For the LVS3 reference instruments, the filters must be changed manually every 24 hours. The results can be fully transferred to the Fidas Smart 100 E measuring systems.

Impaction plates on the sampling head were cleaned approximately every two weeks during the test period and greased with silicone grease in order to ensure reliable separation of the particles.

The flow rates of the tested and the reference instruments were checked before and after each relocation using a dry gas meter or a mass flow controller in each case connected to the instrument's air inlet via a hose line.

Sites of measurement and instrument installation

At the field test sites in Cologne, Bornheim and Bonn, an air pollution measurement station was used on whose roof the test specimens were installed. Except for at the Cologne I site,

Page 30 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

the reference instruments were installed directly in front of it. At the Cologne I site, the SEQ47/50-RV reference devices were in the measurement station and the LVS3 reference instruments were installed on the roof. Testing at the site in Niederzier was carried out without an air pollution measurement station. Here, the measuring systems and reference instruments were installed on the ground in close proximity to each other.

The field test was performed at the following measurement sites:

No.	Measurement site	Period	Description
1	Cologne I	01/2021 – 03/2021	Urban background
2	Niederzier I	04/2021 - 06/2021	Industrial background
3	Cologne II	07/2021 – 11/2021	Urban background
4	Bornheim	12/2021 – 03/2021	Affected by traffic
5	Bonn	04/2022 - 05/2022	Urban background
6	Niederzier 2	06/2022 - 08/2022	Industrial background

Table 7:Field test sites

Testing at the Niederzier 2 site was conducted exclusively for PM_{10} , as for PM_{10} insufficient value pairs above 28 mg/m³ had been determined. Therefore, this location was not evaluated for $PM_{2.5}$.

Figure 8 to Figure 18 show the PM concentrations measured with the reference systems at the field test sites.

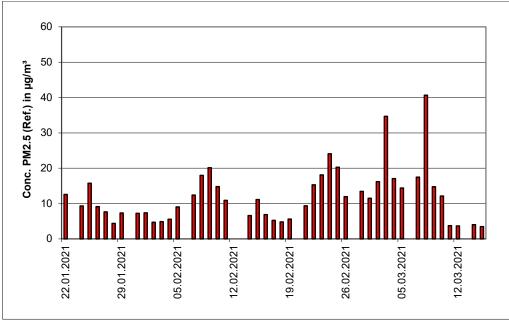


Figure 8: PM_{2.5} concentrations (reference) at the Cologne I location

Page 31 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

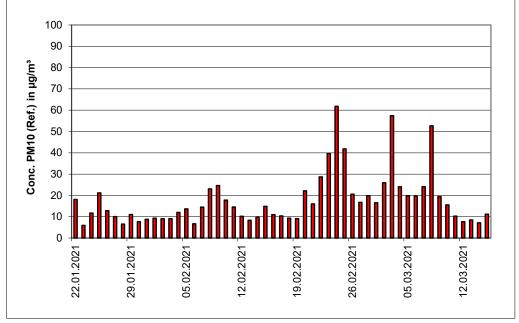


Figure 9: PM₁₀ concentrations (reference) at the Cologne I location

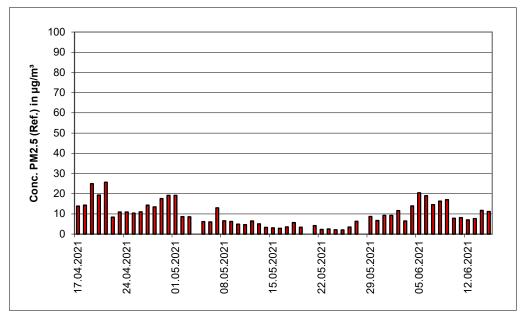


Figure 10: PM_{2.5} concentrations (reference) at the Niederzier I location

Page 32 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

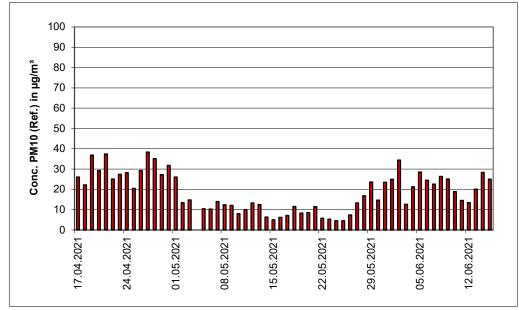


Figure 11: PM₁₀ concentrations (reference) at the Niederzier I location

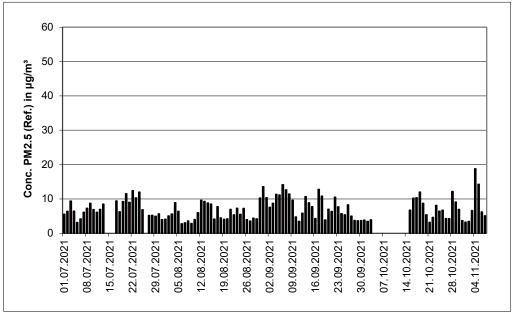


Figure 12: PM_{2.5} concentrations (reference) at the Cologne II location

Page 33 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

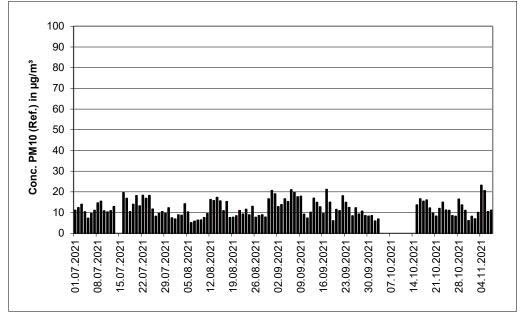


Figure 13:

PM₁₀ concentrations (reference) at the Cologne II location

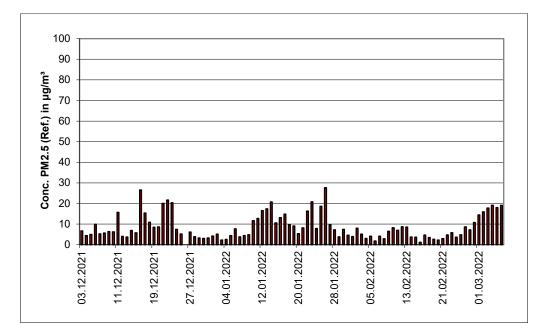


Figure 14: PM_{2.5} concentrations (reference) at the Bornheim location

Page 34 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

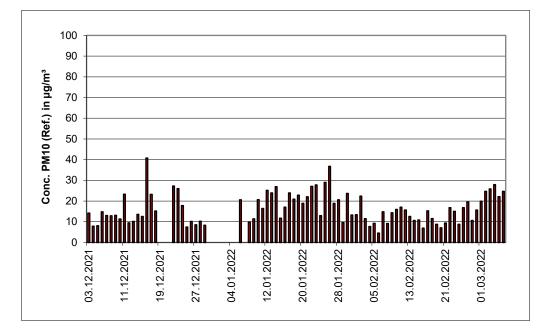


Figure 15: PM₁₀ concentrations (reference) at the Bornheim location

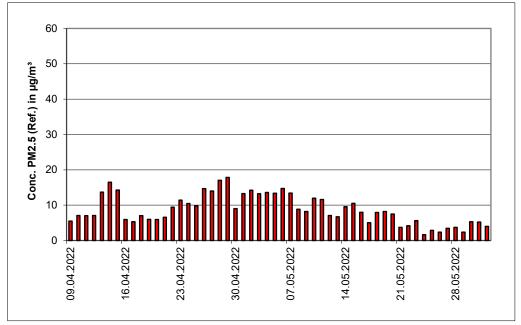


Figure 16: PM_{2.5} co

PM_{2.5} concentrations (reference) at the Bonn location

Page 35 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

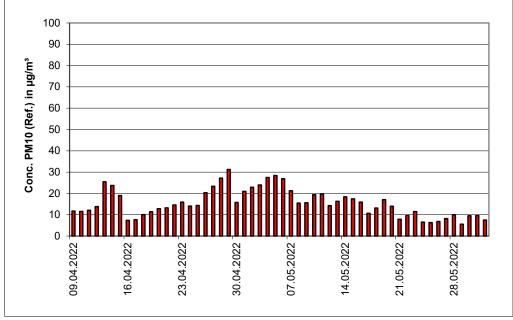


Figure 17: PM₁₀ concentrations (reference) at the Bonn location

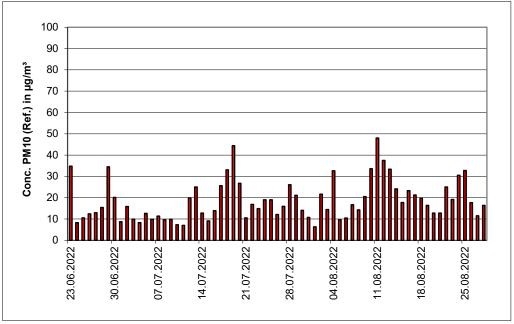


Figure 18: PM₁₀ concentrations (reference) at the Niederzier II location

Page 36 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

The following figures show the various field test locations (the AMS are marked in red):

Figure 19: Field test site Cologne

Figure 20: Field test site Niederzier (AMS in the middle)

TÜV Rheinland Energy GmbH Air Pollution Control

Page 37 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Figure 21: Field test site Bornheim

Figure 22: Field test site Bonn

Page 38 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

In addition to the air quality measuring systems for monitoring suspended particulate matter, a data logger for meteorological data was installed at the measuring station/measurement site. Data on air temperature, pressure, humidity, wind speed, wind direction and precipitation were continually measured. 1 minute mean values were recorded.

The following dimensions describe the design of the measurement cabinet as well as the position of the sampling probes.

Germany

	Height of cabinet roof: Height of sampling for test equipment:	2.50 m 3.70 m above ground/ 1.20 m above container roof
•	Reference system:	3.47m above ground/0.97 m above container roof
•	Height of the wind vane:	4.5 m above ground level

In addition to an overview of the meteorological conditions determined during measurements at the 6 field test sites, the following Table 8 provides information on the concentrations of suspended particulate matter.

Page 39 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Table 8: Ambient conditions at the field test sites as daily averages

	Cologne I	Niederzier I	Cologne II	Bornheim	Bonn	Niederzier II
Number of value pairs	PM10: 53	PM10: 59	PM10: 117	PM10: 83	PM10: 54	PM10: 67
Reference	PM _{2.5} : 44	PM _{2.5} : 57	PM _{2.5} : 115	PM _{2.5} : 93	PM _{2.5} : 54	
Ratio of PM _{2.5} to PM ₁₀ [%]	04.4 05.4	00.4 00.0	25.2.00.0	40.4 00.0	04.0 00.4	Not data:
Range	31.1 – 85.4 64.5	33.4 – 92.6 52.0	35.3 – 80.9	16.4 – 90.0	24.8 - 80.4	Not deter- mined
Average	04.0	52.0	57.2	51.3	55.4	minou
Air temperature [°C]						
Range	-5.8 – 15.4	4.9 – 26.9	6.7 – 22.5	-1.5 – 14.0	6.7 – 24.3	16.5 – 28.1
Average	5.7	13.6	6.7	5.6	15.0	20.7
Air pressure [hPa]						
Range	985 – 1030	990 – 1016	996 – 1025	989 – 1034	995 – 1023	994 – 1019
Average	1007	1004	1012	1013	1011	1007
Rel. Humidity [%]						
Range	42 – 90	48 – 94	60 - 93	54 – 99	37 – 85	36 – 86
Average	71	72	75	83	58	61
Wind speed* [m/s]						
Range						
Average	Not deter- mined	1.3 – 9.1 3.4	0.01 – 1.7 0.3	0.3 – 3.7 1.3	0.3 – 1.5 0.6	Not deter- mined

*These data are only indicative measurements

Page 40 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Sampling duration

Standard EN 12341 [3] fixes the sampling time at 24 h ± 1 h.

During the field test, a sampling time of 24 h was always set for all instruments (from 10:00 - 10:00 h at the Cologne I site; from 00:00 - 00:00 h at all other sites).

Data handling

Prior to their assessment for each field test site, measured value pairs determined from reference values during the field test were submitted to a statistical Grubbs's test for outliers (99%) in order to prevent distortions of the measured results from data, which evidently is implausible. Measured values pairs detected as significant outliers may be expunged from the pool of values as long as the test statistic remains above the critical value. In accordance with standard EN 16450 [4], it is permitted to remove up to 2.5% of data pairs that qualify as outliers as long as at least 40 valid data pairs per site remain. One outlier was identified for $PM_{2.5}$.

The following value pair has been expunged:

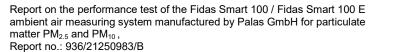
 Table 9:
 Removed value pair in line with Gubbs, reference PM_{2.5}

Location	Date	Reference 1 [µg/m³]	Reference 2 [µg/m³]
Bornheim	26.12.2021	13.3	8.83

The measured values on 04.05.2021 had to be discarded because bad weather had severely impaired the reference measurements.

Filter handling – Mass measurement

The following filters were used during performance testing:


Table 10: Filter materials used

Filter material, type	Manufacturer
Emfab™, Ø 47 mm	Pall

Filter handling was performed in compliance with EN 12341.

The filter handling and weighing procedures are described in detail in Appendix 2 to this report.

TÜV Rheinland Energy GmbH Air Pollution Control

5. Reference Measurement Method

The following instruments were used for the field test.

1. As reference instrument PM_{2.5}: Standard reference sampling devices Low Volume Sam-

pler LVS3

Manufacturer: Sven Leckel Ingenieurbüro GmbH, Berlin PM_{2.5} sample inlet

2. As reference instrument $PM_{2.5}$ and PM_{10} :

Standard reference samplers with automatic filter change SEQ47/50-RV Manufacturer: Sven Leckel Ingenieurbüro GmbH, Berlin PM_{2.5} und PM₁₀ sampling head

In the Cologne I field test, two LVS3 reference instruments were used for $PM_{2.5}$ and two SEQ47/50-RV for PM_{10} . At all other field test sites, only SEQ47/50-RV were used.

During the test, two reference instruments for $PM_{2.5}$ and two for PM_{10} were operated in parallel with a controlled flow rate of 2.3 m³/h. Under normal conditions the accuracy of flow control is < 1% of the nominal flow rate.

On the reference instruments, the rotary vane vacuum pump takes in sample air via the sampling head. The volumetric flow is measured between the filter and the vacuum pump with the help of a measuring orifice. The air taken in flows from the pump via a separator for the abrasion of the rotary vane to the air outlet.

In the LVS3, the measuring electronics display the aspirated sample air volume in standard and operating m³ after sampling has been completed.

With the SEQ47/50-RV, a new filter is automatically inserted after 24 hours of sampling and the sampled filter is placed in the filter magazine. The relevant sampling parameters are stored on a storage medium.

The concentration of suspended dust was determined by dividing the amount of suspended dust on the respective filter determined gravimetrically in the laboratory by the associated sample air volume in operating m³.

Page 42 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6. Test results

6.1 6.3 General requirements (VDI 4202 Part 3 February 2019)

6.1 6.3.1 Measured value display

The measuring system shall have an operative measured value display as part of the instrument.

6.2 Equipment

No additional equipment is required.

6.3 Testing

It was checked whether the measuring system has a measured value display.

6.4 Evaluation

The measuring system has an operative measured value display at the front of the instrument. This is only visible when the weatherproof housing is dismantled.

6.5 Assessment

The measuring system has an operative measured value display at the front of the instrument.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Figure 23 shows the measuring system with integrated display of measured values.

Figure 23:

Fidas Smart 100 with measured value display

Page 43 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 6.3.2 Easy maintenance

Necessary maintenance of the measuring systems should be possible without large effort, if possible from outside.

6.2 Equipment

No additional equipment is required.

6.3 Testing

The necessary regular maintenance was performed in accordance with the instruction manual.

6.4 Evaluation

The manufacturer has prepared a maintenance plan for this measuring system. The shortest maintenance interval is 1 year (check with Monodust 1500 and check volume flow).

Please note: The European standard EN 16450 [4] contains more extensive requirements for the necessary frequency of calibrations, tests and maintenance work. This may make it necessary to check the measuring equipment more frequently.

6.5 Assessment

Maintenance work can be carried out externally with standard tools and reasonable effort.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Maintenance was performed during the test in accordance with the activities and procedures described in the operating manual. Complying with the procedures described in the manual, no difficulties were identified. All maintenance work was carried out without any problems.

Page 44 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 6.3.3 Functional check

If the operation or the functional check of the measuring system require particular instruments, they shall be considered as part of the measuring system and be applied in the corresponding sub-tests and included in the assessment. The test laboratory shall assess the suitability of the automatic function control of the AMS.

6.2 Equipment

Operating manual

6.3 Testing

The tested system does not have an automatic function control. The current operating status of the measuring system is continuously monitored and any issues will be flagged via a series of different error messages.

6.4 Evaluation

The tested measuring system does not have internal devices for operating the functional check. The current operating status is continuously monitored and any issues will be flagged via a series of different warning messages.

A zero filter is mounted to the instrument inlet for the purpose of external zero checks. The use of this filter allows the provision of PM-free air. To check the sensitivity, the instrument is exposed to particles of a defined size (MonoDust 1500). The particle size distribution of this dust is monodisperse and the peak in the distribution of the raw data, which has been generated in the instrument, shall lie at the target channel given on the Monodust calibration certificate (typically 140.1). If the peak deviates from this value, the value can be adjusted. Due to this adjustment at one particle size, the sensitivity of the measuring system for all particle sizes is adjusted automatically as the instrument operates with only one A/D converter.

6.5 Assessment

The tested system does not have an automatic function check.

Criterion satisfied? not applicable

6.6 Detailed presentation of test results

Not applicable.

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 6.3.4 Set-up times and warm-up times

The operating instructions have to contain the manufacturer's data relating to the setting-up time and running-in time of the AMS.

6.2 Equipment

User manual.

6.3 Testing

The measuring systems were set up following the manufacturer's instructions. Set-up times and warm-up times were recorded separately.

Necessary structural measures in advance of installation, such as the installation of roof ducts, are not evaluated here.

6.4 Evaluation

The set-up time is primarily determined by the conditions at the installation site. Installation consists essentially of mounting the measuring instrument on a suitable fixture and establishing the power supply. The start-up procedure is described in detail in chapter 4 of the user manual. Afterwards, various tests must be carried out, such as checking the tightness.

In the case of the Fidas Smart 100 E measuring system, the roof outlet must also be set up and sealed.

For the initial installation and various changes in the position of the field measuring point, a set-up time of approx. 0.5 h was determined.

The measuring system is then ready for use.

6.5 Assessment

Set-up time during the performance testing was approx. 0.5 h. The work required for this is described in the user manual.

The warm-up time until valid measured values are available after switching on is approx. 15 minutes.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Not applicable.

Page 46 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 6.3.5 Instrument design

The instruction manual shall include specifications from the manufacturer regarding the design of the measuring system. The main elements are:

- Instrument shape (e.g. bench mounting, rack mounting, free mounting)
- Mounting position (e.g. horizontal or vertical mounting)
- Safety requirements
- Dimensions
- Weight
- Power consumption
- Preventing condensation within the analyser.

6.2 Equipment

Operating manual as well as a measuring instrument for recording energy consumption (Voltcraft Energylogger) and scales.

6.3 Testing

The instrument design of the measuring systems handed over for testing was compared to the description provided in the manual. The energy consumption specified was verified over 24 h during normal operation.

6.4 Evaluation

The Fidas Smart 100 measuring system must be mounted in a horizontal installation position with the wall bracket. The under side of the measuring system must be kept clear. The Fidas Smart 100 E measuring system can also be installed standing on a surface. The temperature at the installation site must be in the range -20 °C to 50 °C; weather protection is not necessary (if the outdoor cover is used).

The dimensions and weight of the measuring system correspond to the information provided in the operating manual. The measuring system weighs approx. 2.4 kg and the cover weighs approx. 1.5 kg. The extended sampling tube for the Fidas Smart 100 E measuring system weighs 2.2 kg.

The energy requirement of the measuring system is specified by the manufacturer as a maximum of 60 watts. A significant proportion of this is accounted for by the compact IADS humidity compensation module, which has a power consumption of up to 40 watts. Over 24 hours, the average power consumption was approx. 32 watts.

To avoid condensation effects, the IADS humidity compensation module is installed upstream of the aerosol sensor. The maximum power of the IADS heater is specified by the manufacturer as 40 watts. Since excessive temperatures in the sampling tube can lead to reduced results due to volatilization, the sampling tube is only heated as much as absolutely necessary. The heating power is essentially controlled as a function of the air humidity and is thus strongly dependent on the ambient conditions.

6.5 Assessment

Specifications made in the instruction manual concerning instrument design are complete and correct.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Page 47 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 6.3.6 Unintended adjustment

It shall be possible to secure the adjustment of the measuring system against illicit or unintended adjustment during operation. Alternatively, the operating manual shall specifically note that the measuring system may only be installed in a secured area.

6.2 Equipment

The test of this criterion did not require any further equipment.

6.3 Testing

The measuring system is operated via a front display or via an external computer connected directly or via network.

6.4 Evaluation

The system has password protection. Changing parameters is only possible after entering the password.

6.5 Assessment

The measuring system is secured against unintended and unauthorised adjustment of instrument parameters by way of a password.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Page 48 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 6.3.7 Data output

The output signal shall be provided digitally and/or as analogue signals (e.g. 4 mA to 20 mA).

6.2 Equipment

PC

6.3 Testing

The various outputs are checked and evaluated.

6.4 Evaluation

The measured values are only output digitally. The measuring system has USB, Ethernet, WLAN and mobile network (SIM card required).

6.5 Assessment

The measured signals are provided digitally.

It is possible to connect additional measuring and peripheral devices.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Page 49 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 6.3.8 Digital interface

The digital interface shall allow the transmission of output signals, status signals, and information like instrument type, measurement range, and measured component and unit. The digital interface shall be described fully in respective standards and guide-lines.

Access to the measuring system via digital interfaces, e.g. for data transmission, shall be secured against unauthorised access, e.g. by a password.

6.2 Equipment

PC for data transmission.

6.3 Testing

The measuring system provides the following transmission routes: TCP/IP network, USB, WLAN and mobile network.

6.4 Evaluation

Digital measured signals are provided as follows: TCP/IP network, USB, WLAN and mobile network.

The digital output signals were checked using a PC connected to the measuring systems. All relevant pieces of information such as measured signals, status signals, measured component, measurement range, unit and further instrument information can be transmitted digitally. The digital transmission protocols UDP ASCII and TCP ASCII are supported.

Digital data retrieval always requires entry of the correct password.

6.5 Assessment

Digital transmission of measured values operates correctly.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Page 50 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 6.3.9 Data transmission protocol

The measuring system shall contain at minimum one data transmission protocol for the digital transmission of the output signal.

Every data transmission protocol provided by the manufacturer for the measuring system shall allow the correct transmission of the data and detect errors in the transmission. The data transmission protocol including the used commands is to be documented in the instruction manual. The data transmission protocol shall allow to transmit at minimum the following data:

- Identification of the measuring system
- Identification of measured components
- Unit
- Output signal with time signature (date and time)
- Operation and error status
- Operating commands for remote control of the measuring systems

All data are to be transmitted as clear text (ASCII characters).

The AMS has to transmit telemetrically the data of operating states of at least the following parameters:

- Volumetric flow rate
- *Pressure drop across the sampling filter (where relevant)*
- Sampling duration
- Sample volume (where relevant)
- Mass concentration of the relevant particulate matter fraction(s)
- Ambient air temperature
- Ambient air pressure
- Air temperature in the measuring unit
- Temperature of the sample inlet if a heated sample inlet is used

The results of automated/functional checks have to be recorded, where available.

6.2 Equipment

PC for data transmission.

6.3 Testing

2 different protocols can be transmitted via the interfaces: UDP ASCII and TCP ASCII.

6.4 Evaluation

2 different protocols can be transmitted via the interfaces: UDP ASCII and TCP ASCII. Chapter 12 of the manual describes the protocols.

6.5 Assessment

The measuring system has 4 different transmission protocols as standard. Measured and status signals are transmitted correctly.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Page 51 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 7.1 Performance requirements (EN 16450, June 2017)

6.1 1 Measurement ranges

The measurement range of the AMS has to comprise at least the following values: $0 \mu g/m^3$ to $1000 \mu g/m^3$ as a 24-hour average value $0 \mu g/m^3$ to $10,000 \mu g/m^3$ as a 1-hour average value, if applicable

6.2 Equipment

The test of this criterion did not require any further equipment.

6.3 Testing

It was tested whether the measuring system's upper limit of measurement meets the requirements.

6.4 Evaluation

A maximum measuring range of 0 - 20,000 μ g/m³ is possible with the measuring system.

6.5 Assessment

The upper limit of the measuring range is at 20,000 $\mu g/m^3.$ Criterion satisfied? $% \mu g/m^3$ yes

6.6 Detailed presentation of test results

Page 52 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 2 Negative signals

Negative signals shall not be suppressed.

6.2 Equipment

The test of this criterion did not require any further equipment.

6.3 Testing

It was tested in the laboratory as well as in the field whether the measuring system can also output negative measured values.

6.4 Evaluation

The measuring system is able to output negative signals both via its display and its data outputs, however, negative measured values did not occur during the test. Given the measuring principle and design of the instrument, negative values are not to be expected.

6.5 Assessment

While the AMS is able to display negative readings directly and via the various outputs, they should not be expected given the instrument design and the measurement principle applied. Criterion satisfied? yes

6.6 Detailed presentation of test results

TÜV Rheinland Energy GmbH Air Pollution Control

Page 53 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 3 Zero level and detection limit (7.4.3)

Zero level: $\leq 2.0 \ \mu g/m^3$ Detection limit: $\leq 2.0 \ \mu g/m^3$

6.2 Equipment

Zero filter for zero checks

6.3 Testing

The zero level and detection limit of the AMS shall be determined by measurement of 15 24 hour average readings obtained by sampling from zero air (no rolling or overlapped averages are permitted). The mean of these 15 24 h averages is used as the zero level. The detection limit is calculated as 3.3 times the standard deviation of the 15 24 h averages.

The zero level and the detection limit were determined with zero filters installed at the AMS inlets of the instruments during normal operation. Air free of suspended particulate matter was applied over a period of 15 days for a duration of 24 h each.

6.4 Evaluation

The detection limit X is calculated from the standard deviation s_{x0} of the measured values sucking air free from suspended particulate matter through both test specimen. It is equal to the standard deviation of the average x_0 of the measured values x_{0i} multiplied by 3.3 for each test specimen.

X = 3.3
$$\cdot S_{x0}$$
 where $\cdot S_{x0} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1,n} (x_{0i} - \overline{x_0})^2}$

6.5 Assessment

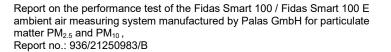
The zero level and the detection limit were determined to be 0.00 $\mu g/m^3$ for both $PM_{2.5}$ and PM_{10} for both systems.

Criterion satisfied? yes

Page 54 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.6 Detailed presentation of test results


Table 11: Zero level and detection limit PM_{2.5}

		Device	Device
Number of values n		15	15
Average of the zero values $\overline{\mathbf{x}_0}$	µg/m³	0.00	0.00
Standard deviation of the values $\boldsymbol{s}_{\boldsymbol{x}\boldsymbol{0}}$	µg/m³	0.00	0.00
Student-Factor t _{n-1;0,95}		2.14	2.14
Detection limit x	µg/m³	0.00	0.00

Table 12: Zero level and detection limit PM₁₀

		Device 12248	Device 12250
Number of values n		15	15
Average of the zero values $\overline{\mathbf{x}_0}$	µg/m³	0.00	0.00
Standard deviation of the values $\boldsymbol{s}_{\boldsymbol{x}\boldsymbol{0}^{\cdot}}$	µg/m³	0.00	0.00
Student-Factor t _{n-1;0,95}		2.14	2.14
Detection limit x	µg/m³	0.00	0.00

Annex 1 in the appendices contains the individual measured values for the determination of the zero level and detection limit.

Page 55 of 271

6.1 4 Flow rate accuracy (7.4.4)

The relative difference between the two values determined for the flow rate shall be \leq 2.0%.

The relative difference between the two values determined for the flow rate shall fulfil the following performance requirements:

≤ 2.0%

- at 5°C and 40°C for installations in an air-conditioned environment by default
- at minimum and maximum temperatures specified by the manufacturer if these deviate from the default temperatures.

6.2 Equipment

Climatic chamber for the temperature range between -20 °C and 50 °C, a reference flow meter in accordance with item 4.

6.3 Testing

At each temperature, at least ten independent measurements shall be performed over a minimum period of one hour at the operating flow rate specified by the manufacturer. The measurements shall be performed at equal intervals over the measurement period. For each temperature, the mean of the measurement results shall be compared with the operational flow rate.

The Fidas Smart 100 measuring system operates at a flow rate of 1 l/min. The manufacturer has set the minimum temperature at -20 °C and the maximum temperature at 50 °C, as the measuring system is intended for outdoor installations.

With the help of a reference flow meter, the volume flow was measured at -20 °C and 50 °C by means of 10 measurements over 1 hour at the operational volume flow specified by the manufacturer. The measurements were performed at equal intervals throughout the measurement period.

6.4 Evaluation

Averages were calculated from the 10 measured values per temperature level and the deviations from the operating volume flow rate specified by the manufacturer were determined.

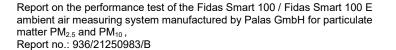
6.5 Assessment

The relative difference determined for the mean of the measuring results at flow rates at - 20° C and at 50° C did not exceed -1.7%.

Criterion satisfied? yes

Page 56 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B


6.6 Detailed presentation of test results

Results of the flow measurements at the permissible ambient temperatures are shown in the following table.

Table 13: Flow rate accuracy at -20 °C and +50 °C

		Device 12248	Device 12250
Nominal value flow rate	l/min	1.00	1.00
Mean value at -20°C	l/min	1.003	0.983
Dev. from nominal value	%	0.3	-1.7
Mean value at 50°C	l/min	1.011	1.001
Dev. from nominal value	%	1.1	0.1

TÜV Rheinland Energy GmbH Air Pollution Control

Page 57 of 271

6.1 5 Constancy of sample flow rate (7.4.5)

The instantaneous flow rate and the flow rate averaged over the sampling period shall fulfil the performance requirements below.

 \leq 2.0 % of the nominal value of the volume flow (averaged sample flow)

 \leq 5 % of the nominal value of the volume flow (instantaneous value of the sample flow)

6.2 Equipment

For this test, an additional reference flow meter in accordance with item 4 was provided.

6.3 Testing

The Fidas Smart 100 measuring system operates with a flow rate of 1 l/min.

The sample flow rate was calibrated prior to the first field test and then checked with the help of a mass flow controller at every new field test site and re-adjusted when necessary.

To determine the constancy of the sample flow rate, the flow rate was recorded and evaluated with the help of a mass flow meter once over a period of 24h.

6.4 Evaluation

The average, standard deviation as well as the maximum and minimum values were determined from the measured values for the flow rate (24-hour average).

6.5 Assessment

The charts illustrating the constancy of the sample flow rate (24h average) demonstrate that all measured values determined during sampling deviate from their respective nominal values by less than 3.9%. The deviation of the daily averages for the overall flow rate of 1 l/min did not exceed -0.59% of the nominal value.

All determined instantaneous values deviate less than 3.9 %; all averaged values deviate less than -0.59 % from the nominal value.

Criterion satisfied? yes

Page 58 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

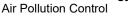

6.6 Detailed presentation of test results for the nominal flow

Table Table 14 lists the characteristics determined for the flow rate. Figure 24 to Figure 25 provide a chart of the flow rate measurement for both instruments.

 Table 14:
 Performance characteristics for the overall flow rate measurement (daily average)

		Device 12248	Device 12250
Mean value	l/min	1.01	0.99
Dev. from nominal value	%	0.52	-0.59
Standard deviation	l/min	0.01	0.01
Minimum value	l/min	0.986	0.961
Maximum value	l/min	1.039	1.033

TÜV Rheinland Energy GmbH

Page 59 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

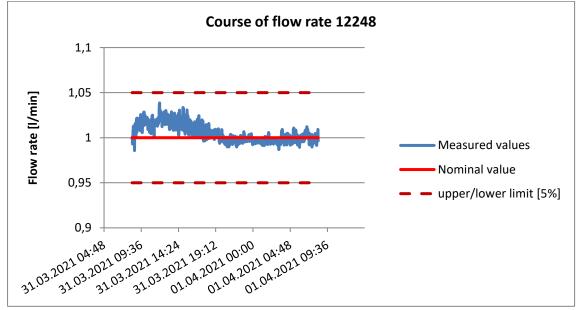


Figure 24: Flow rate of tested instrument SN 12248

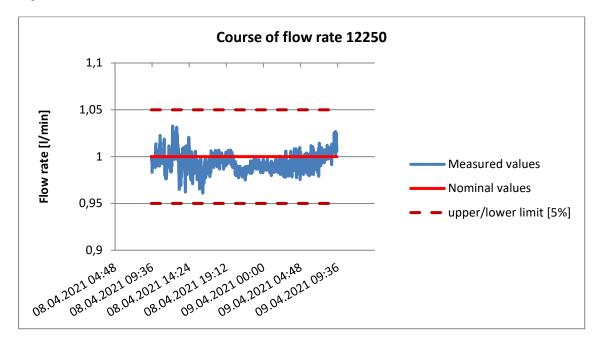


Figure 25: Flow rate of tested instrument SN 12250

Page 60 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 6 Leak tightness of the sampling system (7.4.6)

Leakage shall not exceed 2.0% of the sample flow rate or else meet the AMS manufacturer's specifications in complying with the required data quality objectives (DQO).

6.2 Equipment

Means to block the sample inlet.

6.3 Testing

The tightness (leakage rate) of the entire flow route of the AMS (sample inlet, sampling line, measuring system) shall be tested as specified by the manufacturer. A leak test integrated in an AMS can be used, provided that the stringency of such a test is suitable for a proper assessment of the instrument's leak tightness.

If the complete system cannot be tested for technical reasons, the leak rate can be determined separately for each element of the flow path. If proper sealing of the sample inlet is not possible, it may be excluded from the test.

There is a defined procedure to check the tightness of the Fidas Smart 100 measuring systems. For this purpose, the instrument is switched to the "air tightness" test mode according to chapter 4.5 of the manual and a zero filter is mounted on the sample inlet. The measuring system waits automatically until the particle concentration is constant at 0.00 1/cm³. Then the fan speed is set to the highest level. In the event of a leak, particles would then enter the measuring chamber due to the higher negative pressure. If the particle concentration remains at 0.00 1/cm³, the leak test is deemed to have been passed. This is displayed in the software / on the screen. This procedure is performed analogously for the Fidas Smart 100 E measuring system. The aerosol tube extension is then part of the leak test.

This procedure was carried out at the beginning and at the end of the field test at every location.

6.4 Evaluation

The leak test was carried out at the beginning and at the end of the field test at every location.

The leak test procedure specified by the manufacturer proved to be a suitable method for monitoring the leak tightness of the system in the test.

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.5 Assessment

The leak test procedure specified by the system manufacturer proved to be suitable for monitoring the system tightness in the test.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Not applicable in this instance.

Page 61 of 271

Page 62 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 7 Dependence of measured value on surrounding temperature (7.4.7.)

The differences found shall comply with the performance criteria given below. Zero point $\leq 2.0 \ \mu g/m^3$

- between 5°C and 40°C by default, for installations in an air-conditioned environment.
- at minimum and maximum temperatures specified by the manufacturer if these deviate from the default temperatures.

6.2 Equipment

Climatic chamber for the temperature range -20 °C to 50 °C, zero filter for zero point check.

6.3 Testing

The dependence of the zero reading on the ambient temperature must be determined at the following temperatures:

- a) at a nominal temperature $T_{S,n} = 20$ °C;
- b) at a minimum temperature $T_{S,1} = -20 \degree C$

c) at a maximum temperature $T_{S,2} = 50$ °C.

To test the dependence of the zero point on the surrounding temperature, the complete measuring system was operated in a climatic chamber. Sample air, free of suspended particles, was supplied to the two candidate systems after fitting two zero filters at the AMS inlet in order to perform zero point checks.

At each temperature setting, three separate measurement results shall be recorded at the zero point.

For each temperature setting, the criteria for the warm-up or stabilisation time according to 7.4.2.1 must be fulfilled.

The tests were performed in the temperature sequence $T_{S,n} - T_{S,1} - T_{S,n} - T_{S,2} - T_{S,n}$. The manufacturer has set the minimum temperature at -20 °C and the maximum temperature at 50 °C, as the measuring system is intended for outdoor installations.

Readings were recorded at zero point after an equilibration period of at least 6h for every temperature step (3 readings each).

6.4 Evaluation

The measured values for the concentration of the respective individual measurements were taken, averaged for each temperature increment and evaluated as described below.

In order to exclude any possible drift due to factors other than temperature, the measurements at $T_{\text{S},n}$ were averaged.

The differences between readings at both extreme temperatures and $T_{s,n}$ were determined.

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.5 Assessment

The tested ambient temperature range is -20 °C to 50 °C. The maximum deviation from the mean measured value at $T_{S,n}$ was 0.0 μ g/m³ for PM_{2.5} and for PM₁₀. Criterion satisfied? yes

6.6 Detailed presentation of test results

Table 15: Dependence of zero point on surrounding temperature, deviation in μ g/m³, average of three measurements, PM_{2.5}

Temperature	SN	12248	SN 12250		
	Measured value	Deviation to mean value at 20°C	Measured value	Deviation to mean value at 20°C	
°C	µg/m³	µg/m³	µg/m³	µg/m³	
20	0.0	0.0	0.0	0.0	
-20	0.0	0.0	0.0	0.0	
20	0.0	0.0	0.0	0.0	
50	0.0	0.0	0.0	0.0	
20	0.0	0.0	0.0	0.0	
Mean value at 20°C	0.0	-	0.0	-	

Table 16: Dependence of zero point on surrounding temperature, deviation in μ g/m³, average of three measurements, PM₁₀

Temperature	SN	12248	SN 12250		
	Measured value	Deviation to mean value at 20°C	Measured value	Deviation to mean value at 20°C	
°C	µg/m³	µg/m³	µg/m³	µg/m³	
20	0.0	0.0	0.0	0.0	
-20	0.0	0.0	0.0	0.0	
20	0.0	0.0	0.0	0.0	
50	0.0	0.0	0.0	0.0	
20	0.0	0.0	0.0	0.0	
Mean value at 20°C	0.0	-	0.0	-	

Annex 3 in the appendices contains the individual measured results.

Page 64 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 8 Dependence of measured value (span) on surrounding temperature (7.4.7)

The differences found shall comply with the performance criteria given below. Sensitivity of the measuring system (span): \leq 5 % from the value at the nominal test temperature

- between 5°C and 40°C by default, for installations in an air-conditioned environment.
- at minimum and maximum temperatures specified by the manufacturer if these deviate from the default temperatures.

6.2 Equipment

Climatic chamber for the temperature range -20 °C to 50 °C, MonoDust 1500 for sensitivity testing.

6.3 Testing

The dependence of the span value, measured by applying a calibration artefact on the surrounding temperature, shall be determined at the following temperatures:

a) at a nominal temperature $T_{S,n} = 20 \text{ °C};$

b) at a minimum temperature $T_{s,1} = -20 \text{ °C}$

c) at a maximum temperature $T_{s,2} = 50$ °C.

To test the dependence of the sensitivity of the measuring system (span) on the ambient temperature, the complete measuring equipment was operated in the climatic chamber. For the span point tests, MonoDust 1500 was applied to the test systems. The channel shift was assessed here and no direct concentration measurement was performed (see pg. 29).

For each temperature setting, three independent measurement results of the sensitivity are to be recorded.

For each temperature setting, the criteria for the warm-up or stabilisation time according to 7.4.2.1 must be fulfilled.

The tests were performed in the temperature sequence $T_{S,n} - T_{S,1} - T_{S,n} - T_{S,2} - T_{S,n}$. The manufacturer has set the minimum temperature at -20 °C and the maximum temperature at 50 °C, as the measuring system is intended for outdoor installations.

Readings were recorded at span point after an equilibration period of at least 6h for every temperature step (3 readings each).

6.4 Evaluation

The measured values for the concentration of the respective individual measurements were taken, averaged for each temperature increment and evaluated as described below.

In order to exclude any possible drift due to factors other than temperature, the measurements at $T_{S,n}$ were averaged.

The differences between readings at both extreme temperatures and $T_{s,n}$ were determined.

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.5 Assessment

The tested ambient temperature range is -20 °C to 50 °C. The maximum deviation from the mean measured value at 20 °C was 3.1 % for $PM_{2.5}$ and 0.5 % for PM_{10} . Criterion satisfied? yes

6.6 Detailed presentation of test results

Temperature	SN 12248		SN 12250	
	Measured value	Deviation to mean value at 20°C	Measured value	Deviation to mean value at 20°C
°C	0	%	0	%
20	24.9	-0.3	24.5	0.0
-20	24.9	-0.4	24.0	-1.8
20	25.0	0.0	24.4	-0.3
50	25.5	2.3	25.2	3.1
20	25.0	0.3	24.5	0.3
Mean value at 20°C	25.0	-	24.5	-

Table 17: Dependence of measured value on surrounding temperature, deviation in %, average from three measurements for $PM_{2.5}$

Table 18: Dependence of measured value on surrounding temperature, deviation in %, average from three measurements for PM_{10}

Temperature	SN	12248	SN 12250	
	Measured value	Deviation to mean value at 20°C	Measured value	Deviation to mean value at 20°C
°C	0	%	0	%
20	40.0	0.0	40.0	0.0
-20	40.0	0.0	40.2	0.5
20	40.0	0.0	40.0	0.0
50	39.9	-0.2	40.0	-0.1
20	40.0	0.0	40.0	0.0
Mean value at 20°C	40.0	-	40.0	-

The respective results of the 3 individual measurements are shown in Annex 3.

Page 66 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 9 Dependence of span on supply voltage (7.4.8)

The differences found shall comply with the performance criteria given below. Sensitivity of the measuring system (span): ≤ 5% from the value at the nominal test voltage

6.2 Equipment

Isolating transformer, MonoDust 1500 for sensitivity check.

6.3 Testing

The dependence of the measured value corrected by a calibration factor on the supply voltage must be determined at the following voltages (cf. EN 50160 [10] taking into consideration the manufacturer's specifications:

- at the nominal voltage $Vs_{,n} = 230 V$;

- at a minimum voltage $V_{s,1}$ = 195 V;

- at a maximum voltage $V_{s,2}$ = 253 V.

This test item requires the use of calibration equipment for span.

Three individual readings shall be recorded for span at each voltage setting.

At each voltage setting the criteria for warm-up or stabilization time are to be met according to 7.4.2.1.

The tests are performed in the voltage sequence $V_{S,n} - V_{S,1} - V_{S,n} - V_{S,2} - V_{S,n}$.

For the span point tests, MonoDust 1500 was applied to the test systems. The channel shift was assessed here and no direct concentration measurement was performed (see pg. 29).

6.4 Evaluation

In order to rule out a possible drift caused by factors other than voltage, the measured values were averaged at $V_{\text{S},\text{n}}.$

The differences between readings at both extreme voltages and V_{S,n} were determined.

6.5 Assessment

No deviations of more than -0.8 % for $PM_{2.5}$ and -0.1 % for PM_{10} at the extreme values related to the mean value at 230 V, could be detected by mains voltage changes. Criterion satisfied? yes

TÜV Rheinland Energy GmbH Air Pollution Control

TÜVRheinland[®] Precisely Right.

Page 67 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.6 Detailed presentation of test results

Supply voltage	SN 12248		SN 12250	
	Measured value	Deviation to mean value at 230 V	Measured value	Deviation to mean value at 230 V
V	µg/m³	%	µg/m³	%
230	25.0	0.0	24.5	0.3
195	25.0	0.0	24.5	0.3
230	25.1	0.2	24.6	0.5
253	25.0	-0.3	24.5	0.1
230	25.0	-0.1	24.3	-0.8

Table 19: Influence of mains voltage on measured value, deviation in % for PM_{2.5}

Table 20:	Influence of mains voltage on measured value, deviation in % for $\ensuremath{PM_{10}}$
-----------	---

Supply voltage	SN 12248		SN 12250	
	Measured value	Deviation to mean value at 230 V	Measured value	Deviation to mean value at 230 V
V	µg/m³	%	µg/m³	%
230	40.0	0.0	40.0	-0.1
195	40.0	0.0	40.0	-0.1
230	40.0	0.0	40.0	-0.1
253	40.0	0.0	40.0	-0.1
230	40.0	0.0	40.1	0.1

Annex 4 in the appendices contains the individual results.

Page 68 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 10 Effect of failure of mains voltage

Instrument parameters shall be secured against loss. On return of main voltage the instrument shall automatically resume functioning.

6.2 Equipment

Not required for this performance criterion.

6.3 Testing

A simulated failure in the mains voltage served to test whether the instrument remained fully functional, reached operation mode on return of the mains voltage and retained all instrument parameters completely.

6.4 Evaluation

The measuring system resumes operation after a power failure and the start of the operating system. It is operational after a couple of minutes. All instrument parameters are preserved.

6.5 Assessment

All instrument parameters are secured against loss. On return of mains voltage, the instrument returns to normal operating mode and automatically resumes measuring. Criterion satisfied? yes

6.6 Detailed presentation of test results

Not applicable.

Page 69 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 11 Dependence of reading on water vapour concentration (7.4.9)

The largest difference in readings between 40% and 90% relative humidity shall fulfil the performance criterion stated below: $\leq 2.0 \ \mu g/m^3$ in zero air when cycling relative humidity from 40% to 90% and back.

6.2 Equipment

Climatic chamber with humidity control for the range 40 % to 90 % relative humidity, zero filter for zero point verification.

6.3 Testing

The dependence of the reading on the water vapour concentration in the sample air was determined by supplying humidified zero air in the range of 40 % to 90 % relative humidity. To this effect, the measuring system was operated in the climatic chamber and the relative humidity of the entire surrounding atmosphere was controlled. Sample air, free of suspended particles was supplied to the instruments after fitting two zero filters at either AMS inlet in order to perform zero point checks.

After stabilisation of the relative humidity and concentration readings of the AMS, a reading was taken over the smallest averaging period of the AMS at 40 % relative humidity. The relative humidity was then increased to 90 % at a rate of 25 % per hour. The time taken to reach equilibrium and the average concentration reading were recorded. The relative humidity was then reduced to 40 % at a rate of 25 % per hour. The time taken to reach equilibrium and the average concentration reading were recorded.

6.4 Evaluation

The measured values for the zero concentrations of the individual measurements at stable humidities were read out and evaluated. The largest difference in μ g/m³ between the values in the range of 40 % to 90 % relative humidity is considered.

6.5 Assessment

The largest difference determined between the measured values at 40 % and at 90 % relative humidity was 0.0 μ g/m³.

Criterion satisfied? yes

Page 70 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.6 Detailed presentation of test results

rel. Humidity	SN 12248		SN 12250	
	Measured value	Deviation to previous value	Measured value	Deviation to previous value
%	µg/m³	µg/m³	µg/m³	µg/m³
40	0.0	-	0.0	-
90	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0
Maximum deviation	0.0		(0.0

Table 21: Dependence of reading on water vapour concentration, deviation in µg/m³, PM_{2.5}

Table 22:	Dependence of reading	g on water vapour concentration,	deviation in ug/m ³ PM ₄₀
	Dependence of reading	y on water vapour concentration,	ueviation in µg/m, rivi10

rel. Humidity	SN 12248		SN 12250	
	Measured value	Deviation to previous value	Measured value	Deviation to previous value
%	µg/m³	µg/m³	µg/m³	µg/m³
40	0.0	-	0.0	-
90	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0
Maximum deviation	0.0		(0.0

Page 71 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 12 Zero checks (7.5.3)

During the tests, the absolute measured value of the AMS shall not exceed the following criterion: Absolute value $\leq 3.0 \ \mu g/m^3$

6.2 Equipment

Zero filter for zero checks

6.3 Testing

Regular checks of the AMS reading at zero point shall be performed in the field during normal operation over a sufficient time period by using an appropriate method to provide zero air to the AMS. The manufacturer's instructions shall be observed. An appropriate method to generate zero air is the sampling of ambient air through a zero filter (HEPA) installed at the inlet of the AMS instead of the regular sampling inlet. The zero check shall be performed for at least 24 h.

The checks shall be done at least at the beginning and at the end of each of the 6 comparisons.

6.4 Evaluation

During the tests, the absolute measured value of the AMS at zero point defined at 3.0 $\mu\text{g}/\text{m}^3$ shall not be exceeded.

6.5 Assessment

The absolute measured value determined at the zero point did not exceed 0.0 μ g/m³. Criterion satisfied? yes

6.6 Detailed presentation of test results

Table 23: Zero checks, PM_{2.5}

	SN 12248		SN 12250		
Date	Measured Value µg/m³	Measured value (absolute) < 3.0 μg/m³	Date	Measured Value µg/m³	Measured value (absolute) < 3.0 µg/m³
1/21/2021	0.0	ok	1/21/2021	0.0	ok
3/17/2021	0.0	ok	3/17/2021	0.0	ok
4/16/2021	0.0	ok	4/16/2021	0.0	ok
6/18/2021	0.0	ok	6/18/2021	0.0	ok
6/30/2021	0.0	ok	6/30/2021	0.0	ok
11/8/2021	0.0	ok	11/8/2021	0.0	ok
12/1/2021	0.0	ok	12/1/2021	0.0	ok
3/8/2022	0.0	ok	3/8/2022	0.0	ok
4/5/2022	0.0	ok	4/5/2022	0.0	ok
6/3/2022	0.0	ok	6/3/2022	0.0	ok

Page 72 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Table 24:	Zero checks, PM ₁₀
-----------	-------------------------------

	SN 12248			SN 12250	
Date	Measured Value	Measured value (absolute)	Date	Measured Value	Measured value (absolute)
	µg/m³	< 3.0 µg/m³		µg/m³	< 3.0 µg/m³
1/21/2021	0.0	ok	1/21/2021	0.0	ok
3/17/2021	0.0	ok	3/17/2021	0.0	ok
4/16/2021	0.0	ok	4/16/2021	0.0	ok
6/18/2021	0.0	ok	6/18/2021	0.0	ok
6/30/2021	0.0	ok	6/30/2021	0.0	ok
11/8/2021	0.0	ok	11/8/2021	0.0	ok
12/1/2021	0.0	ok	12/1/2021	0.0	ok
3/8/2022	0.0	ok	3/8/2022	0.0	ok
4/5/2022	0.0	ok	4/5/2022	0.0	ok
6/3/2022	0.0	ok	6/3/2022	0.0	ok
6/21/2022	0.0	ok	6/21/2022	0.0	ok
9/6/2022	0.0	ok	9/6/2022	0.0	ok

TÜV Rheinland Energy GmbH

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 73 of 271

6.1 13 Recording of operational parameters (7.5.4)

During the tests the AMS shall be able to telemetrically transmit operational states of – at minimum – the following parameters:

- Flow rate;
- Pressure drop over sample filter (if relevant);
- Sampling time;
- Sampling volume (if relevant);
- Mass concentration of relevant PM fraction(s);
- Ambient temperature;
- Exterior air pressure;
- Air temperature in measuring section;
- Temperature of the sampling inlet if a heated inlet is used.

The results of automated/functional checks have to be recorded, where available.

6.2 Equipment

Computer for data acquisition.

6.3 Testing

The measuring system enables comprehensive telemetric monitoring and control of the AMS via various paths and can also output measured values or status information via various protocols (UDP ASCII and TCP ASCII) according to the manufacturer's specifications.

It is possible to communicate the operating statuses and relevant parameters including:

- Aerosol pump performance
- Temperature of the IADS
- Temperature of the LED
- Flow rate
- Ambient temperature, pressure, humidity

All values are stored.

6.4 Evaluation

The AMS allows for comprehensive telemetric monitoring and control of the measuring system via various paths. The instrument provides operating statuses and all relevant parameters.

Page 74 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.5 Assessment

The AMS allows for comprehensive telemetric monitoring and control of the measuring system via various paths. The instrument provides operating statuses and all relevant parameters.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Not applicable.

Page 75 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 14 Daily averages (7.5.5)

The AMS shall allow for the formation of daily averages or values.

6.2 Equipment

For this test, a clock was additionally provided.

6.3 Testing

It was checked whether the measuring system allows the formation of a daily average.

6.4 Evaluation

The measuring system continuously determines the suspended particulate matter mass concentration for $PM_{2.5}$ and PM_{10} . The data is stored internally as 2-minute averages. From this, 24 h averages can be determined.

6.5 Assessment

It is possible to form valid daily averages. Criterion satisfied? yes

6.6 Detailed presentation of test results

Not applicable.

Page 76 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 15 Availability (7.5.6)

The availability of the measuring system shall be at least 90%.

6.2 Equipment

Not required for this performance criterion.

6.3 Testing

The start and end times of the availability tests are determined by the start and end times, respectively, at each of the six field test sites. Proper operation of the measuring system was verified during every on-site visit (usually every working day). This daily check consisted of plausibility checks on the measured values, status signals and other relevant parameters (see 7.5.4). Time, duration and nature of any error in functioning are recorded.

The total time during the field test in which valid measurement data of ambient air concentrations were obtained was used for calculating availability. Time needed for scheduled calibrations and maintenance (cleaning; change of consumables) should not be included.

Availability is calculated as

$$A = \frac{t_{valid} + t_{cal,maint}}{t_{field}}$$

Where:

t _{valid}	is the time during which valid data have been collected;
t _{cal,maint}	is the time spent for scheduled calibrations and maintenance;
t _{field}	is the total duration of the field test.

6.4 Evaluation

Table 25 shows a list of operating, maintenance and malfunction times. During the field test, the measuring systems were operated for a total of 470 measuring days. This period includes 12 days with zero filter operation.

Outages caused by external events not ascribed to the measuring system amounted to 2 days (power outage). The externally-caused outages reduced the total time of operation to 468 measuring days.

No instrument malfunctions were observed.

TÜVRheinland[®] Precisely Right.

Page 77 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.5 Assessment

Availability was at 100% for both instruments. Criterion satisfied? yes

6.6 Detailed presentation of test results

Table 25:Determination of the availability

		System 1 (SN 12248)	System 2 (SN 12250)
Operation time (t _{field})	d	468	468
Outage time	d	0	0
Maintenance time incl. zero filter (t _{cal,maint})	d	12	12
Actual operating time (tvalid)	d	456	456
Availability	%	100	100

Page 78 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 Method used for equivalence testing (7.5.8.4 & 7.5.8.8)

Standard EN 16450 [4] requires compliance with the following five criteria:

- 1. Of the full data set, at least 20% of the concentration values (determined with the reference method) shall be greater than $28 \ \mu g/m^3$ for PM₁₀ and $17 \ \mu g/m^3$ for PM_{2.5}. When, due to low concentration levels, the criteria for 20% of results to be greater than 28 $\ \mu g/m^3$ for PM₁₀, or to be greater than 17 $\ \mu g/m^3$ for PM_{2.5} cannot be obtained, a minimum of 32 data points higher than these thresholds is considered sufficient.
- 2. Between-AMS uncertainty shall remain below 2.5 μ g/m³ for the overall data and for data sets with data larger than/equal to 30 μ g/m³ for PM₁₀ and 18 μ g/m³ for PM_{2.5}.
- 3. The uncertainty between reference systems shall not exceed 2.0 µg/m³.
- 4. The expanded uncertainty (W_{CM}) is calculated at 50 μg/m³ for PM₁₀ and at 30 μg/m³ for PM_{2.5} for every individual test specimen and checked against the average of the reference method. For each of the following cases, the expanded uncertainty shall not exceed 25%:
 - Full data set:
 - Data sets representing PM concentrations greater than/equal to 30 μ g/m³ for PM₁₀, or concentrations greater than/equal to 18 μ g/m³ for PM_{2.5}, provided that the set contains 40 or more valid data pairs
 - Data sets for each individual site

5. Preconditions for acceptance of the full data set are that the slope b is insignificantly

different from 1: $|b-1| \le 2 \cdot u(b)$ and the intercept a is insignificantly different from 0: $|a| \le 2 \cdot u(a)$...

 $|a| \le 2 \cdot u(a)$. If these requirements are not met, then the test specimens can be calibrated with the values of the total data set for the slope and/or for the axis section.

The following chapters address the issue of verifying compliance with the five criteria.

Chapter 6.1 16 Between-AMS uncertainty (7.5.8.4) addresses verification of criteria 1 and 2.

Chapter 6.1 17 Expanded uncertainty (7.5.8.5 – 7.5.8.8) addresses verification of criteria 3, 4 and 5.

Chapter 6.1 17 Use of correction factors/terms (7.5.8.5–7.5.8.8) contains an assessment for the case that criterion 5 is not complied with without applying correction factors.

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 79 of 271

6.1 16 Between-AMS uncertainty (7.5.8.4)

The between-AMS uncertainty u_{bs} shall be $\leq 2.5 \ \mu g/m^3$.

6.2 Equipment

Not required for this performance criterion.

6.3 Testing

The test was performed as part of the field test with four separate comparison campaigns. Different seasons as well as different levels of PM concentrations were considered.

Of the total data set, at least 20% of the concentration values determined by the reference method must be greater than 17 μ g/m³ for PM_{2.5} or greater than 28 μ g/m³ for PM₁₀. Should this not be assured because of low concentration levels, a minimum of 32 value pairs is considered sufficient.

For each comparison campaign, at least 40 valid value pairs were determined. Of the entire data set, a total of 34 measured values were above 17 μ g/m³ for PM_{2.5} and 33 measured values were above 28 μ g/m³ for PM₁₀. The concentrations measured were related to the ambient conditions.

6.4 Evaluation

Chapter 7.5.8.4 of standard EN 16450 specifies that:

The between-AMS uncertainty u_{bs} shall be $\leq 2.5 \ \mu g/m^3$. A between-AMS uncertainty > 2.5 $\mu g/m^3$ is an indication of unsuitable performance of one or both instruments, and equivalence should not be stated.

Uncertainty is determined for:

- All results combined (complete data set)
- 1 data set with measured values ≥ 18 µg/m³ for PM_{2.5} (basis: averages reference measurement)
- 1 data set with measured values ≥ 30 µg/m³ for PM₁₀ (basis: averages reference measurement)

The between-AMS uncertainty u_{bs} is calculated from the differences of all daily averages (24h-values) of the AMS which are operated simultaneously as:

$$u_{bs,AMS}^{2} = \frac{\sum_{i=1}^{n} (y_{i,1} - y_{i,2})^{2}}{2n}$$

Where: y_{i,1} and y_{i,2} = Results of the parallel measurements of individual 24h-values i n = Number of 24h-values

Page 80 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.5 Assessment

At no more than 1.6 μ g/m³ the uncertainty between the test specimen u_{bs} remained well below the permissible maximum of 2.5 μ g/m³. Criterion satisfied? yes

6.6 Detailed presentation of test results

Table 26:Between-AMS uncertainty ubs,AMS

Location	Number of	Uncertainty Ubs,AMS		
	measurements	μg	/m³	
		PM _{2.5}	PM ₁₀	
All locations	363 (PM _{2.5}) 433 (PM ₁₀)	0.415	0.639	
Classification via reference values				
Values ≥ 18 μg/m³ (PM₂.₅) Values ≥ 30 μg/m³ (PM₁₀)	25 (PM _{2.5}) 25 (PM ₁₀)	0.992	1.6	

Please note: In the following charts CM1 corresponds to SN 12248 and CM2 corresponds to SN 12250.

Page 81 of 271

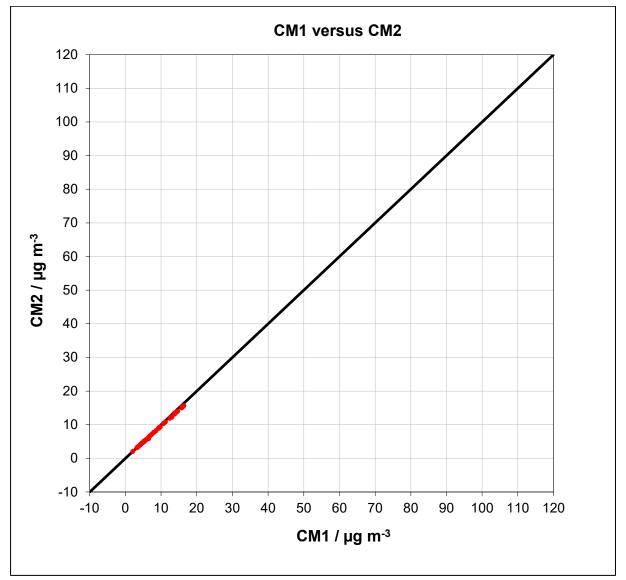


Figure 26: Results of parallel measurements, all sites, PM_{2.5}

Page 82 of 271

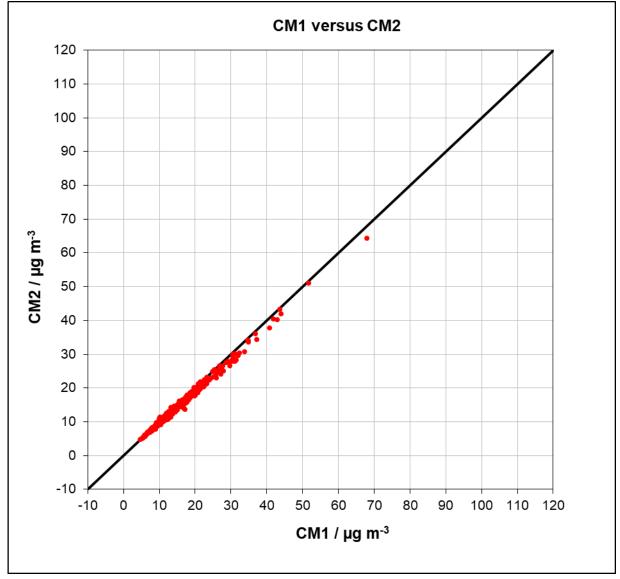


Figure 27: Results of parallel measurements, all sites, PM₁₀

Page 83 of 271

Figure 28: Results of parallel measurements, Cologne I, PM_{2.5}

Page 84 of 271

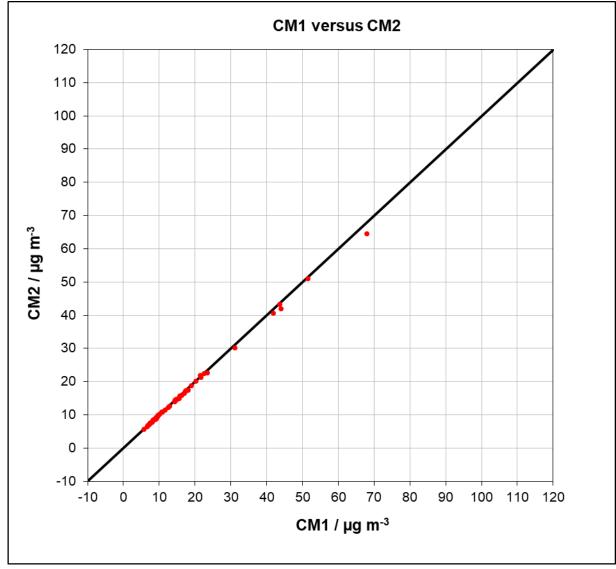


Figure 29: Results of parallel measurements, Cologne I, PM₁₀

Page 85 of 271

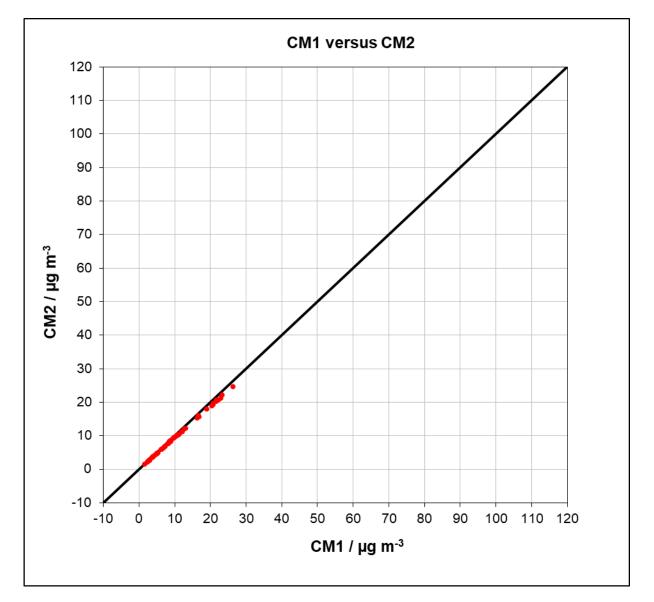


Figure 30: Results of parallel measurements, Niederzier I, PM_{2.5}

Page 86 of 271

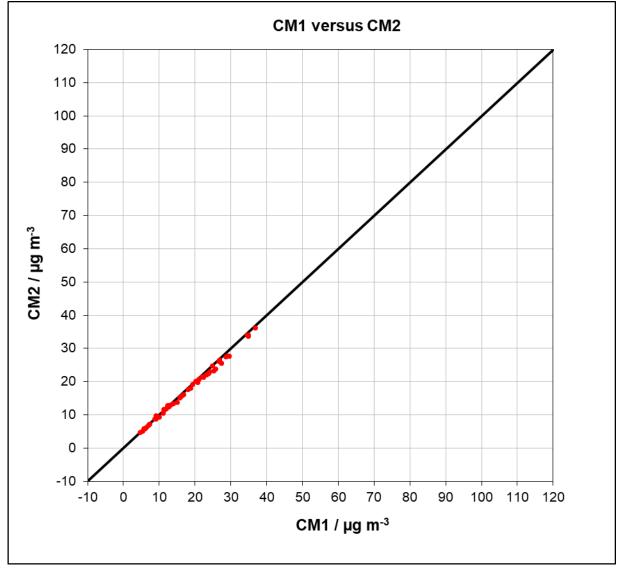


Figure 31: Results of parallel measurements, Niederzier I, PM₁₀

Page 87 of 271

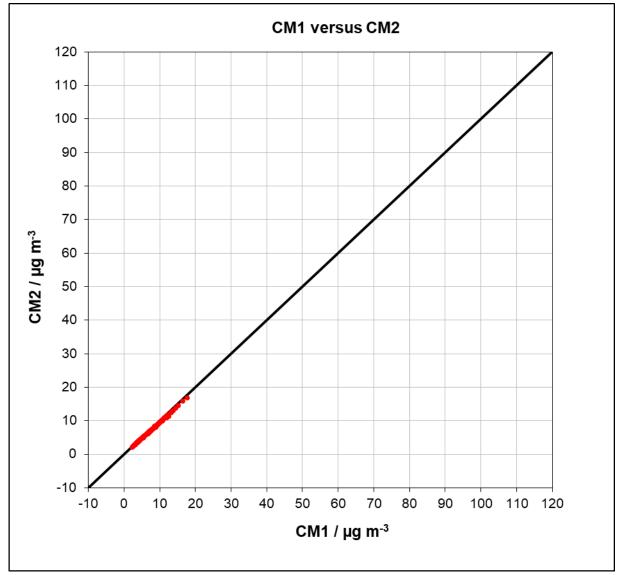


Figure 32: Results of parallel measurements, Cologne II, PM_{2.5}

Page 88 of 271

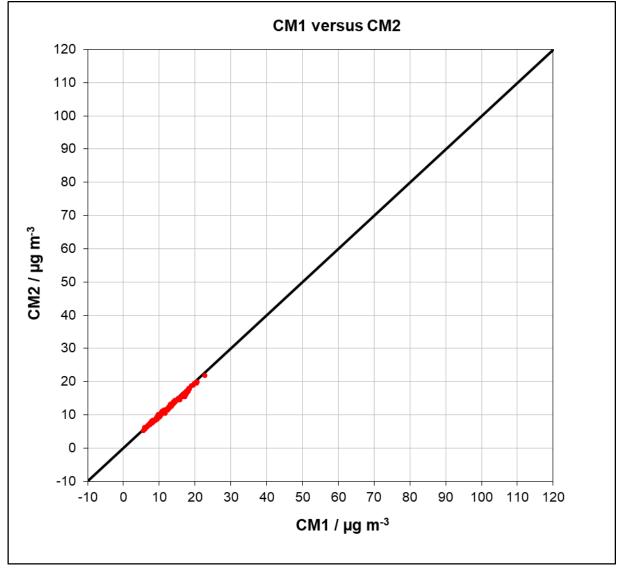


Figure 33: Results of parallel measurements, Cologne II, PM₁₀

Page 89 of 271

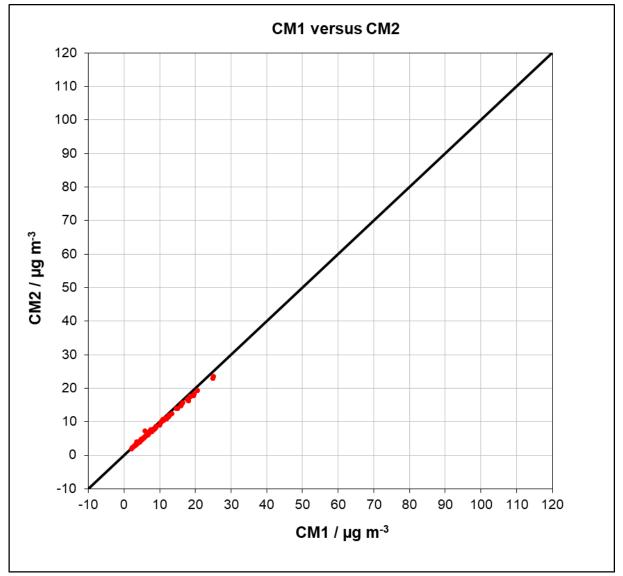


Figure 34: Results of parallel measurements, Bornheim, PM_{2.5}

Page 90 of 271

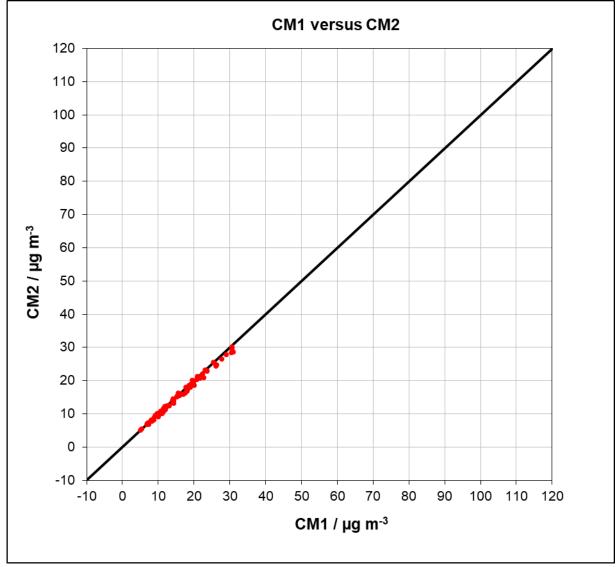


Figure 35: Results of parallel measurements, Bornheim, PM₁₀

Page 91 of 271

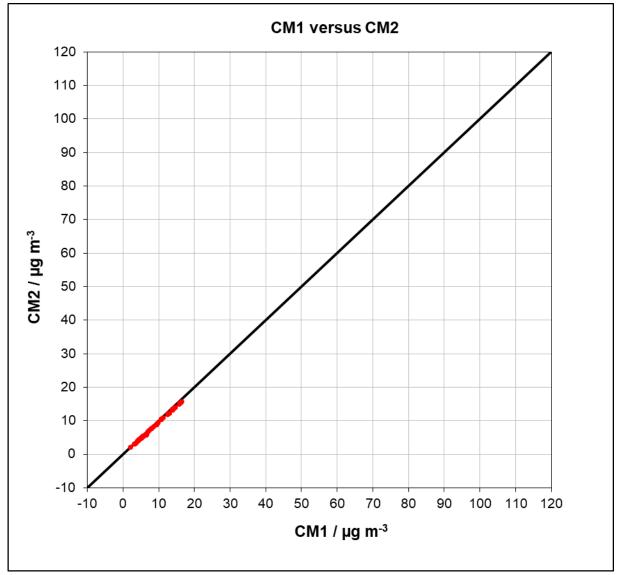


Figure 36: Results of parallel measurements, Bonn, PM_{2.5}

Page 92 of 271

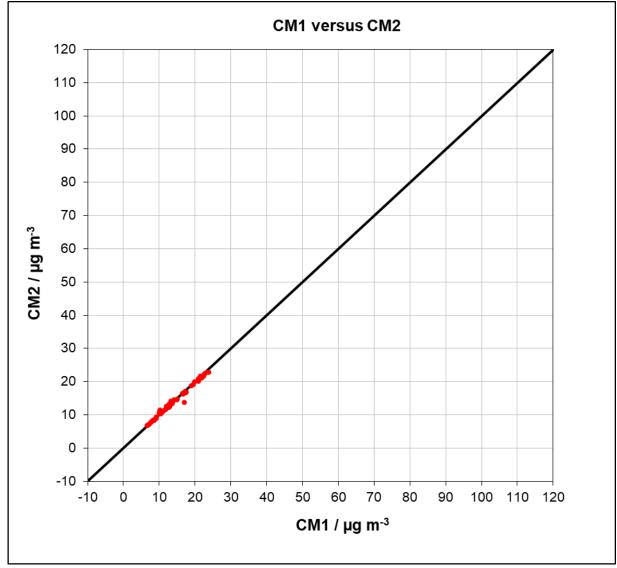


Figure 37: Results of parallel measurements, Bonn, PM₁₀

Page 93 of 271

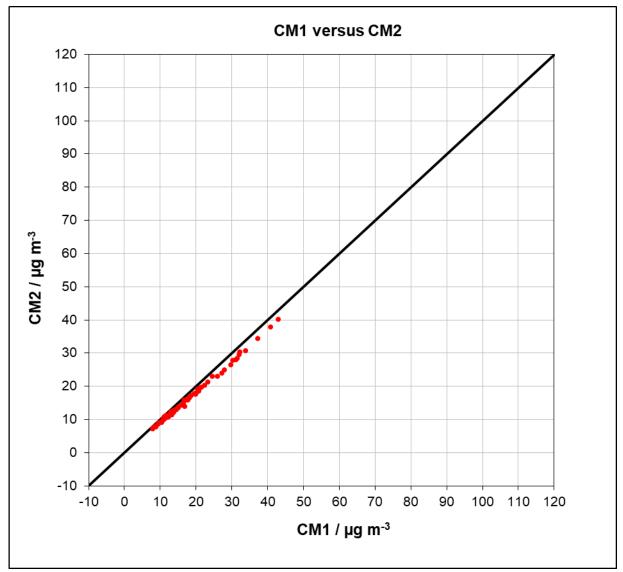


Figure 38: Results of parallel measurements, Niederzier II, PM₁₀

Page 94 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 17 Expanded uncertainty (7.5.8.5 – 7.5.8.8)

The expanded uncertainty shall be $\leq 25\%$ at the level of the relevant limit value related to the 24-hour average results – after a calibration where necessary.

6.2 Equipment

Additional reference measurement systems as described in chapter 5 of this report were used for this test.

6.3 Testing

The test was performed as part of the field test with four separate comparison campaigns. Different seasons and different levels of $PM_{2.5}$ and PM_{10} concentrations were considered.

Of the total data set, at least 20% of the concentration values determined by the reference method must be greater than 17 μ g/m³ for PM_{2.5} or 28 μ g/m³ for PM₁₀. Should this not be assured because of low concentration levels, a minimum of 32 value pairs is considered sufficient.

For each comparison campaign, at least 40 valid value pairs were determined. For all comparison campaigns there were 34 value pairs above 17 μ g/m³ for PM_{2.5} and 33 value pairs above 28 μ g/m³ for PM₁₀. The concentrations measured were related to the ambient conditions.

6.4 Evaluation

[EN 16450, 7.5.8.3]

Before calculating the expanded uncertainty of the test specimens, uncertainties were established between the simultaneously operated reference measuring systems (u_{ref})

Uncertainties between the simultaneously operated reference measuring systems $u_{bs,RM}$ were established similar to the between-AMS uncertainties and shall be $\leq 2.0 \ \mu g/m^3$.

Results of the evaluation are summarised in section 6.6.

[EN 16450, 7.5.8.5 & 7.5.8.6]

In order to assess comparability of the tested instruments y with the reference method x, a linear relationship $y_i = a + bx_i$ between the measured values of both methods is assumed. The association between the averages of the reference systems and each individual test specimen to be assessed is established by means of orthogonal regression.

Page 95 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

The regression is calculated for:

- All sites or comparisons respectively together
- Every location or comparison separately
- For a reduced data set that considers only dust concentrations greater than or equal to 18 μ g/m3 for PM_{2.5} or 30 μ g/m³ for PM₁₀, provided the subset contains at least 40 valid data pairs. Since partial data sets with at least 40 valid data pairs were not obtained for both PM_{2.5} and PM₁₀, no evaluation was performed for data pairs greater than or equal to 18 μ g/m³ for PM_{2.5} or 30 μ g/m³ for PM₁₀.

For further assessment, the uncertainty u_{c_s} resulting from a comparison of the test specimens with the reference method is described in the following equation which defines u_{CR} as a function of the fine dust concentration x_i .

$$u_{yi}^{2} = \frac{RSS}{(n-2)} - u_{RM}^{2} + [a + (b-1)L]^{2}$$

Where RSS = the sum of the (relative) residuals from orthogonal regression

- u_{RM} = random uncertainty of the reference method; u_{RM} is calculated as $u_{bs,RM}/\sqrt{2}$, where $u_{bs,RM}$ is the uncertainty between the two reference instruments operated in parallel.
- L = Replacement daily limit value for $PM_{2.5}$ (30 µg/m³)

The algorithms for calculating axis intercept a and slope b as well as their variance by means of orthogonal regression are described in detail in annex B to [4].

The sum of (relative) residuals RSS is calculated according to the following equation:

$$RSS = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Uncertainty u_{CR} is calculated for:

- All sites or comparisons respectively together
- Every location or comparison separately
- For a reduced data set only taking into account concentrations greater than or equal to 18 μg/m³ for PM_{2.5}, provided that the subset contains 40 or more valid data pairs.

The Guideline states the following prerequisite for accepting the full data set:

- The slope be is insignificantly different from 1: $|b-1| \le 2 \cdot u(b)$ and
- The axis intercept a is insignificantly different from 0: $|a| \le 2 \cdot u(a)$,

Page 96 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

where u(a) and u(b) describe the standard uncertainty of the slope and the axis intercept calculated as the square root of the variance. If the prerequisites are not met, it is possible to calibrate the measuring systems in accordance with section 4 of the standard 7.5.8.6 [4] (also see 6.1 17 Use of correction factors/terms). The calibration may only be performed for the full data set.

[EN 16450 section 7.5.8.7] The combined uncertainty of the tested instruments for all data sets w_{AMS}^2 is calculated as follows:

$$w_{AMS}^2 = \frac{u_{yi=L}^2}{L^2}$$

For each data set the uncertainty w_{AMS} is calculated at a level of L = 30 μ g/m³ for PM_{2.5} and L = 50 μ g/m³ for PM₁₀.

[EN 16450 7.5.8.8] For each data set the expanded relative uncertainty of the results measured with the test specimen is calculated by multiplying w_{AMS} by a coverage factor k according to the following equation:

$$W_{AMS} = k \cdot W_{AMS}$$

Considering the large number of available test results, an expansion factor k=2 must be used.

7.5 Assessment

The determined uncertainties W_{AMS} are above the defined expanded relative uncertainty W_{dqo} of 25% for particulate matter for all considered data sets without applying correction factors. As for both $PM_{2.5}$ and PM_{10} the axis intercept is significantly different from 0 and the slope is significantly different from 1, the application of correction factors according to "Item 6.1 17

Application of correction factors/terms" shall be made accordingly. After applying correction factors and terms, all considered data sets are below the specified expanded relative uncertainty W_{dqo} of 25%.

Criterion satisfied? yes

TÜVRheinland[®] Precisely Right.

Page 97 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Table 27 and Table 28 below summarise all results for the equivalence tests. Where a criterion was not satisfied, the corresponding line is marked in red.

Table 27: Overview of equivalence testing, PM_{2.5}

		Standard EN 16450:2	017		
Candidate	Fidas Smart System		SN	12248 & 12250	
			Limit value	30	µg/m³
Status of measured values	Raw data		Allowed uncertainty	25	%
		All comparisons			
Jncertainty between Reference	0.51	µg/m³			
Jncertainty between Candidates	0.41	µg/m³			
	12248 & 12250				
Number of data pairs	363				
Slope b	0.963	significant			
Jncertainty of b	0.012		-		
Ordinate intercept a	0.263	significant			
Incertainty of a	0.127				
Expanded meas. uncertainty W _{CM}	10.03	%			

Page 98 of 271

Candidate Status of measured values Uncertainty between Reference	Fidas Smart System Raw data	Standard EN 16450:2	SN Limit value	12248 & 12250 30	
	Raw data			30	
Incertainty between Reference			Allowed uncertainty	25	µg/m³ %
ncertainty between Reference					
ncertainty between Reference		Cologne I			
	0.33 0.43	µg/m³			
Incertainty between Candidates	12248	µg/m³		12250	
lumber of data pairs	44		1	44	
Slope b	1.021			0.975	
Incertainty of b	0.019			0.019	
Ordinate intercept a	-0.087			-0.053	
Incertainty of a	0.278			0.264	
xpanded meas. uncertainty W _{CM}	7.39	%		8.19	%
		Niederzier I			
ncertainty between Reference ncertainty between Candidates	0.38 0.49	μg/m³ μg/m³			
	12248	μg/111°		12250	
lumber of data pairs	57		1	57	
ilope b	1.060			0.990	
Incertainty of b	0.034			0.032	
Ordinate intercept a	-0.421			-0.289	
Incertainty of a	0.386			0.371	
xpanded meas. uncertainty W _{CM}	13.44	%		10.21	%
		Cologne II			
Incertainty between Reference	0.45	µg/m³			
Incertainty between Candidates	0.31	µg/m³		40050	
lumber of data pairs	<u>12248</u> 115		1	<u>12250</u> 115	
Slope b	115			0.990	
Incertainty of b	0.031			0.029	
Ordinate intercept a	-0.220			-0.138	
Incertainty of a	0.235			0.222	
xpanded meas. uncertainty W _{CM}	11.66	%		6.71	%
		Bornheim			
Incertainty between Reference	0.47	μg/m³			
Incertainty between Candidates	0.52	µg/m³			
	12248			12250	
lumber of data pairs	93			93	
Slope b	0.901			0.830	
Incertainty of b	0.023			0.024	
Drdinate intercept a Incertainty of a	1.294 0.246			1.385 0.251	
Expanded meas. uncertainty W _{CM}	14.15	%		26.40	%
		Bonn			
Incertainty between Reference	0.80	µg/m³			
ncertainty between Candidates	0.31	µg/m³	1		
	12248		<u> </u>	12250	
lumber of data pairs	54			54	
Slope b Incertainty of b	0.993 0.045			0.948 0.043	
Drdinate intercept a	-0.234			-0.216	
Incertainty of a	0.441			0.421	
xpanded meas. uncertainty W _{CM}	9.10	%	<u> </u>	14.39	%
		All comparisons			
		μg/m³			
Incertainty between Reference	0.51	P9/11			
	0.41	μg/m³	-		
Incertainty between Candidates	0.41 12248			12250	
Incertainty between Reference Incertainty between Candidates umber of data pairs	0.41 12248 363	µg/m³		363	
Incertainty between Candidates	0.41 12248 363 0.993			363 0.933	significant
Incertainty between Candidates Iumber of data pairs Slope b Incertainty of b	0.41 12248 363 0.993 0.012	μg/m³ not significant		363 0.933 0.012	
Incertainty between Candidates	0.41 12248 363 0.993	µg/m³		363 0.933	significant significant

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 99 of 271

Table 28: Overview of equivalence testing, PM₁₀

		andidate with refere Standard EN 16450:20	• • • • • • • • • • • • • • • • • • •				
Candidate	Fidas Smart System		SN	12248 & 12250			
			Limit value	50	µg/m³		
Status of measured values	Raw data		Allowed uncertainty	25	%		
All comparisons							
Uncertainty between Reference	0.63	µg/m³					
Uncertainty between Candidates	0.64	µg/m³					
	12248 & 12250						
Number of data pairs	433						
Slope b	0.899	significant					
Uncertainty of b	0.012						
Ordinate intercept a	0.712	significant					
Uncertainty of a	0.218						
Expanded measured uncertainty WCM	19.17	%					

Page 100 of 271

	Comparison c	andidate with refere Standard EN 16450:2			
Candidate	Fidas Smart System	Stanuaru EN 16450.2	SN	12248 & 12250	
			Limit value	50	µg/m³
Status of measured values	Raw data		Allowed uncertainty	25	%
		Cologne I			
Jncertainty between Reference	0.26	μg/m³			
Uncertainty between Candidates	0.47	µg/m³			
	12248			12250	
Number of data pairs	53			53 0.957	
Slope b Jncertainty of b	0.996 0.027			0.023	
Ordinate intercept a	-1.144			-0.735	
Incertainty of a	0.576			0.498	
Expanded measured uncertainty W _{CM}	11.01	%		14.23	%
		Niederzier I			
Incertainty between Reference	0.65	µg/m³			
Incertainty between Candidates	0.62	µg/m³	•		
	12248			12250	
lumber of data pairs	59			59	
Slope b Incertainty of b	0.922 0.025			0.874 0.024	
Ordinate intercept a	0.976			1.266	
Jncertainty of a	0.518			0.500	
Expanded measured uncertainty W_{CM}	13.62	%		21.20	%
		Cologne II			
Incertainty between Reference	0.50	µg/m³			
Incertainty between Candidates	0.38	μg/m³			
	12248			12250	
Number of data pairs	117			117	
Slope b	0.927			0.870	
Incertainty of b Drdinate intercept a	0.028 0.769			0.025 1.061	
Incertainty of a	0.357			0.315	
Expanded measured uncertainty W _{CM}	12.51	%		22.06	%
		Bornheim			,,
Jncertainty between Reference	0.69	μg/m³			
Jncertainty between Candidates	<u>0.47</u> 12248	µg/m³	1	12250	
lumber of data pairs	83			83	
Slope b	0.912			0.870	
Incertainty of b	0.047			0.048	
Ordinate intercept a	0.721			1.007	
Jncertainty of a	0.853			0.858	
Expanded measured uncertainty W _{CM}	19.37	%		25.35	%
Incertainty between Reference	0.50	Bonn µg/m³			
Jncertainty between Candidates	0.45	μg/m³			
	12248			12250	
lumber of data pairs	54			54	
Slope b	0.797			0.759	
Jncertainty of b	0.039			0.034	
Ordinate intercept a	1.934			2.404 0.562	
Incertainty of a Expanded measured uncertainty W _{CM}	0.651	%			%
Apanaeu measureu uncentainty WCM	33.68	% Niederzier II		39.18	70
Incertainty between Reference	0.94	µg/m ³			
Incertainty between Candidates	1.23	μg/m³			
,	12248			12250	
lumber of data pairs	67			67	
Slope b	0.885			0.811	
Incertainty of b	0.026			0.025	
Ordinate intercept a	1.638			1.469	
Incertainty of a	0.547	0/		0.532	9/
xpanded measured uncertainty W _{CM}	18.16	%		32.76	%
		All comparisons			
Incertainty between Reference	0.63	μg/m³			
Jncertainty between Candidates	0.64 12248	µg/m³	1	12250	
Number of data pairs	433			433	
Slope b	433 0.927	significant		433 0.874	significant
Jncertainty of b	0.012	agintoun	1	0.012	orginitiount
Drdinate intercept a	0.556	significant		0.847	significant
Incertainty of a	0.225			0.215	
Expanded measured uncertainty W_{CM}	15.15	%		23.39	%

matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Results for testing the five criteria from chapter 6.1 Method used for equivalence testing were as follows:

- Criterion 1: More than 32 value pairs were greater than 17 μ g/m³ (PM_{2.5}) or 28 μ g/m³ (PM₁₀).
- Criterion 2: Between-AMS uncertainty of the AMS tested did not exceed 2.5 µg/m³.
- Criterion 3: Uncertainty between reference instruments did not exceed 2.0 µg/m³.
- Criterion 4: Not all expanded uncertainties were below 25%.
- Criterion 5: In a test candidate, the slope and the intercept were significantly larger than allowed when evaluating the total data set.
- Further: There is a slope of 0.963 (PM_{2.5}) or 0.899 (PM₁₀) and an intercept of 0.263 (PM_{2.5)} or 0.712 (PM₁₀) for the total data set for both test candidates together at an expanded total uncertainty of 10.03% (PM_{2.5}) and 19.17% (PM₁₀).

The result was that for both PM_{2.5} and PM₁₀ the intercept was significantly different from 0 and the slope was significantly different from 1. Therefore, an additional assessment was carried out as in chapter "6.1 17 Application of correction factors/terms" by applying the corresponding calibration factor to the data sets.

Page 102 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

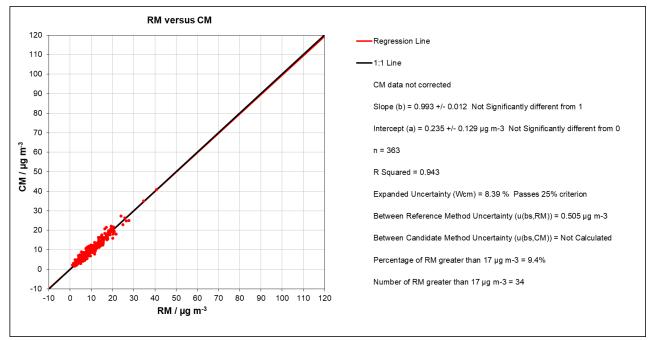
6.6 Detailed presentation of test results

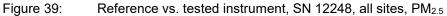
Table 29 provides an overview of the between-RM uncertainties $u_{\text{bs,RM}}$ determined during the field tests.

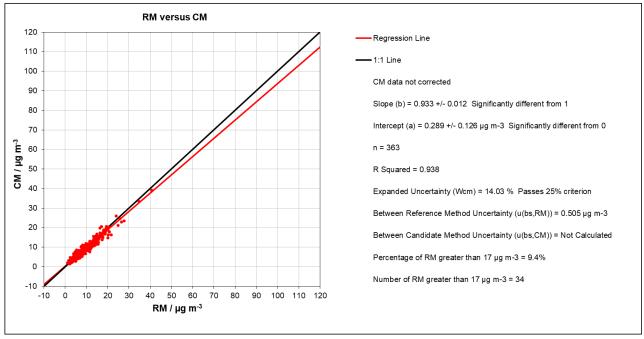
Reference instruments	Location	Number of measurements	Uncertainty ubs,RM
No.			µg/m³
1 / 2	Cologne I	44	0.33
1 / 2	Niederzier I	57	0.38
1 / 2	Cologne II	115	0.45
1 / 2	Bornheim	93	0.47
1 / 2	Bonn	54	0.80
1 / 2	All locations	363	0.51

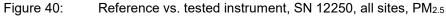
Table 29: Between RM uncertainty ubs,RM, PM_{2.5}

Table 30:Between RM uncertainty ubs,RM, PM10

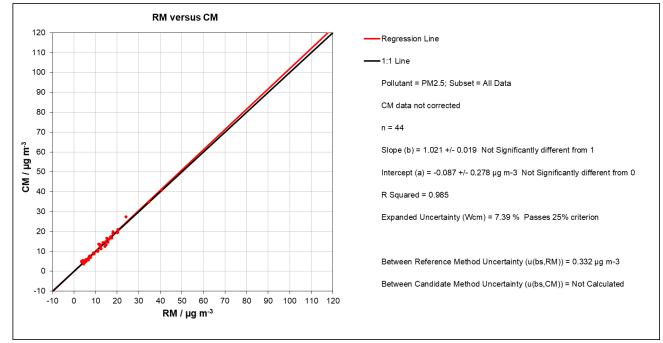

Reference instruments	Location	Number of measurements	Uncertainty u _{bs,RM}
No.			µg/m³
1 / 2	Cologne I	53	0.26
1 / 2	Niederzier I	59	0.65
1 / 2	Cologne II	117	0.50
1 / 2	Bornheim	83	0.69
1 / 2	Bonn	54	0.50
1 / 2	Niederzier II	67	0.94
1 / 2	All locations	433	0.63

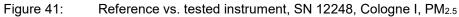

At all sites, between-RM uncertainty $u_{bs,RM}$ was < 2.0 μ g/m³.

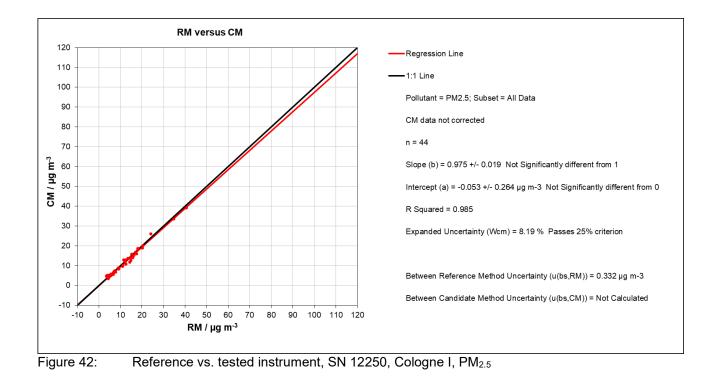

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B



Page 103 of 271



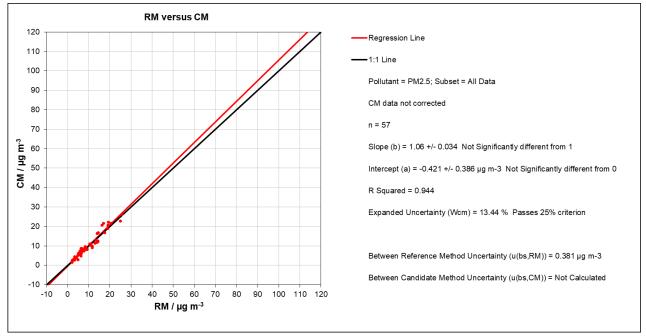
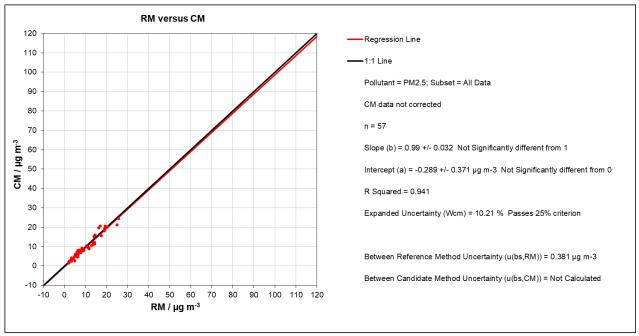


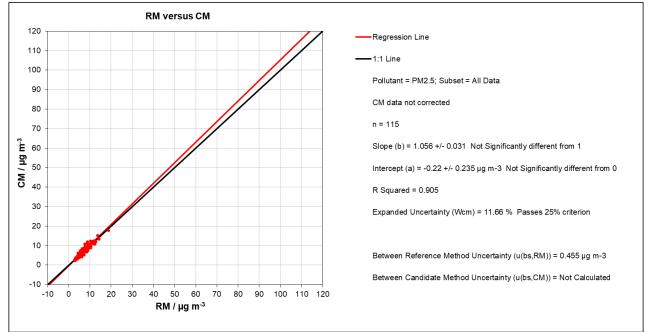


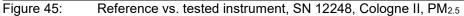
Page 104 of 271

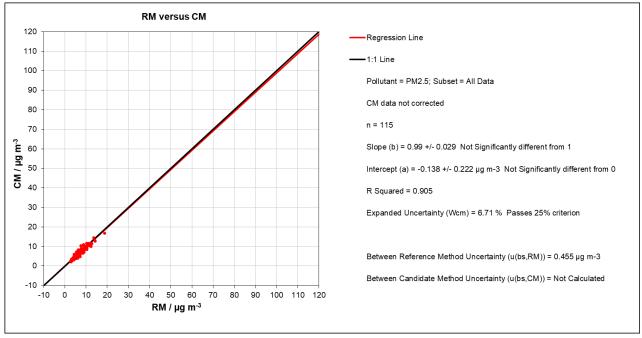
Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

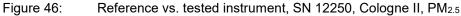
Page 105 of 271

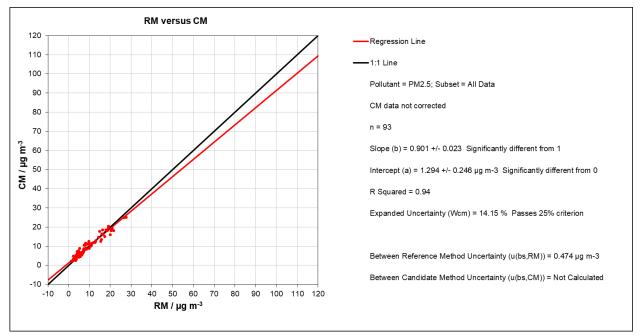

Figure 43: Reference vs. tested instrument, SN 12248, Niederzier I, PM_{2.5}

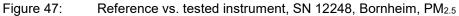


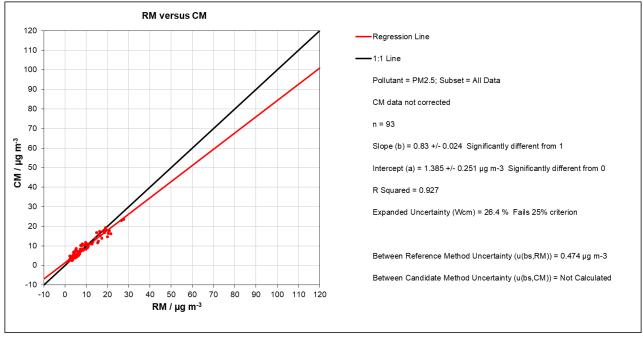


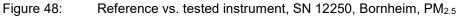


Page 106 of 271

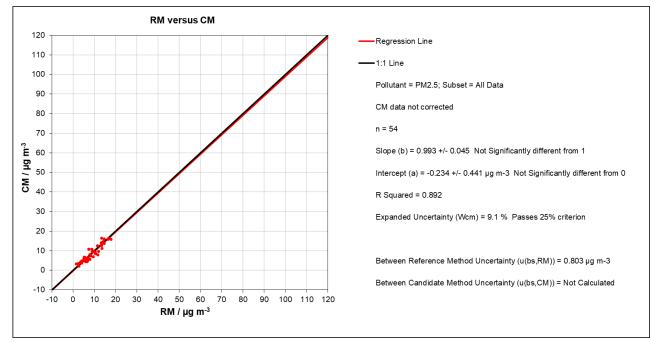


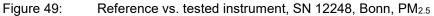


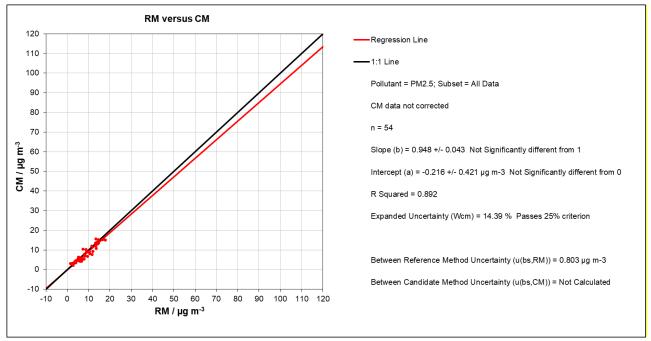

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

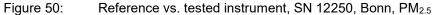


Page 107 of 271









Page 108 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 109 of 271

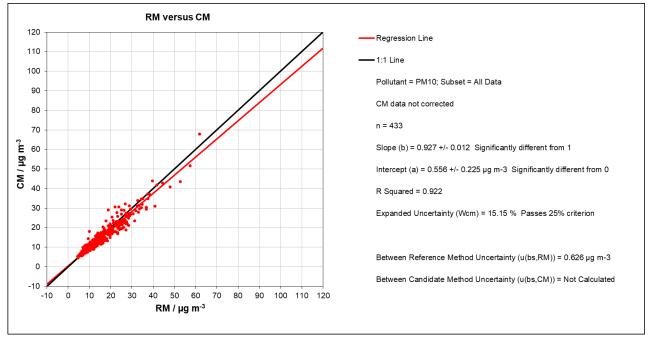
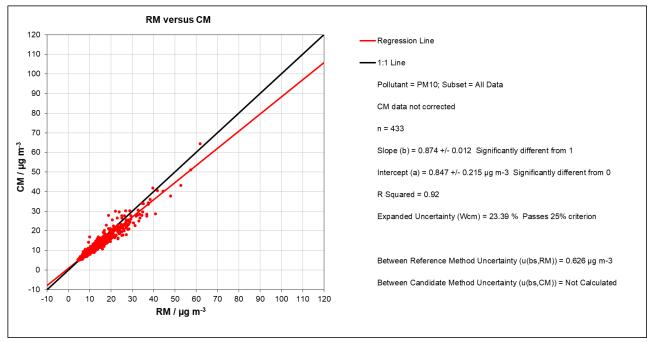
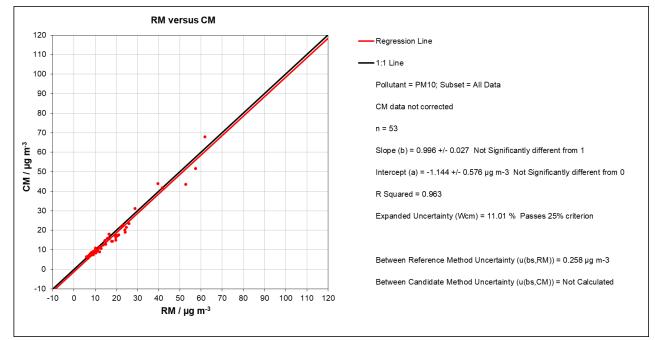
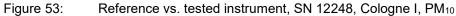
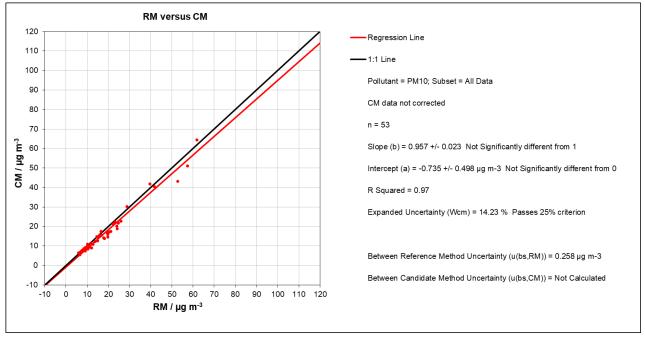


Figure 51: Reference vs. tested instrument, SN 12248, all sites, PM₁₀

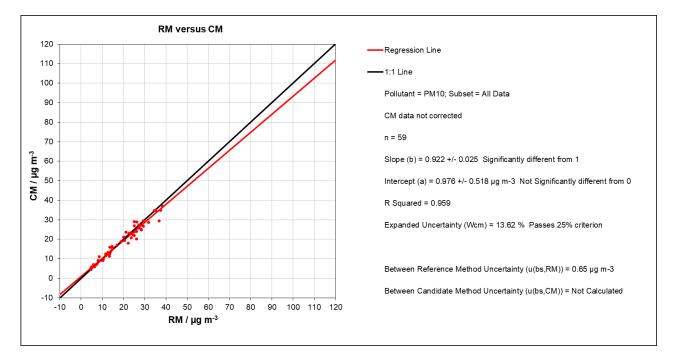



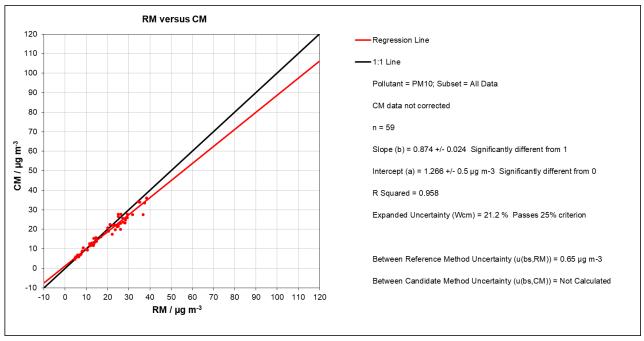

Figure 52: Reference vs. tested instrument, SN 12250, all sites, PM₁₀




Page 110 of 271

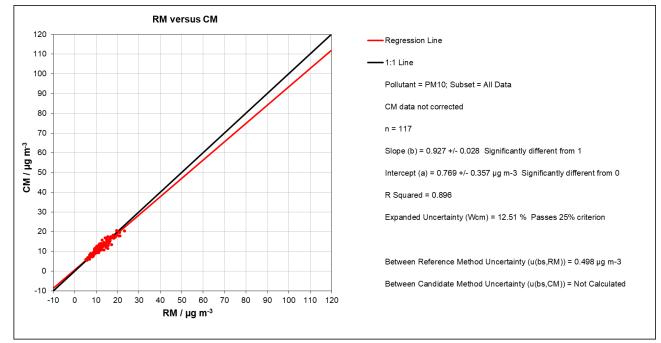
Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

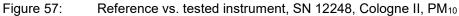


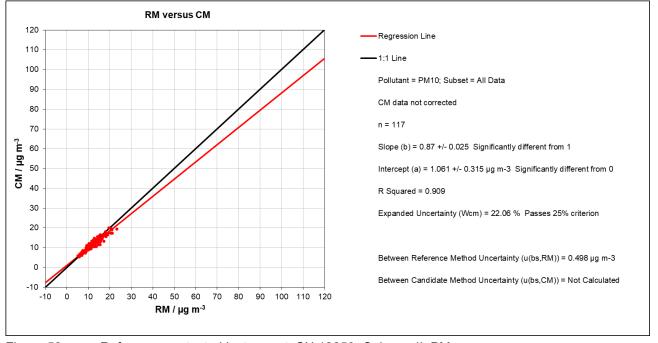

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

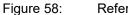
Page 111 of 271

Figure 55: Reference vs. tested instrument, SN 12248, Niederzier I, PM₁₀

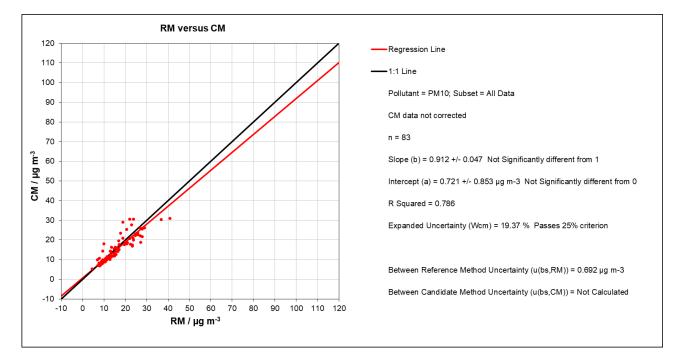




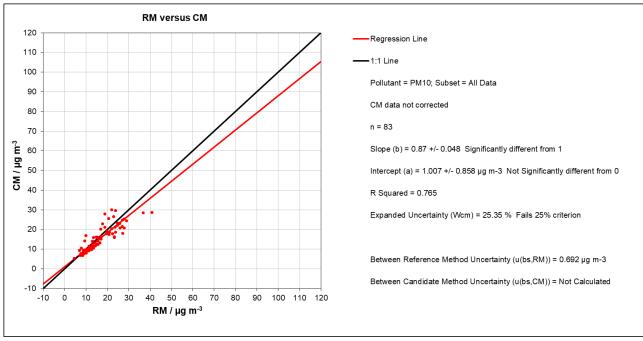



Page 112 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

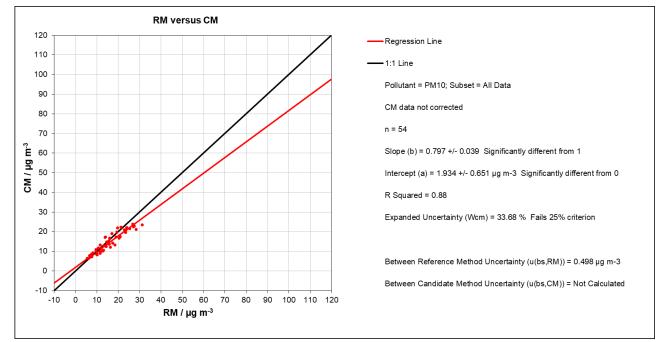


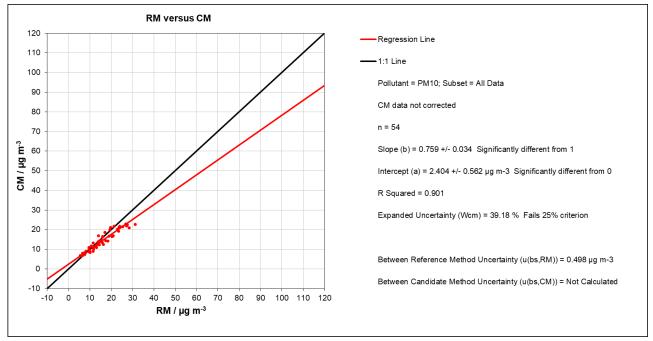
Reference vs. tested instrument, SN 12250, Cologne II, PM₁₀

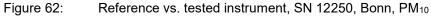

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 113 of 271

Figure 59: Reference vs. tested instrument, SN 12248, Bornheim, PM₁₀

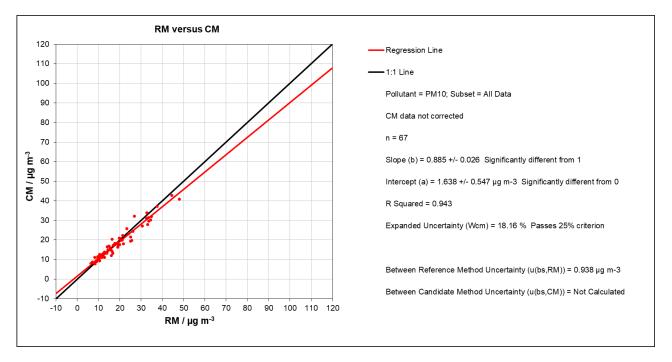


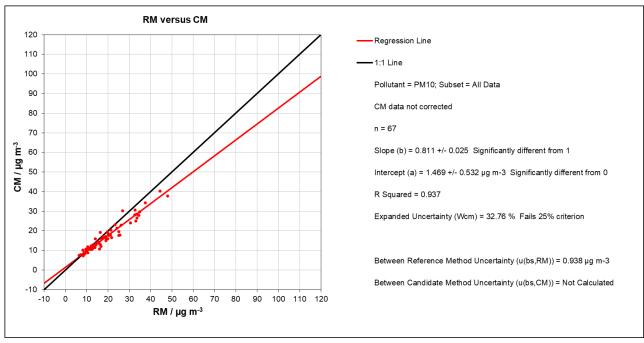


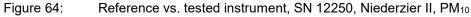

Page 114 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Figure 61: Reference vs. tested instrument, SN 12248, Bonn, PM₁₀




Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B



Page 115 of 271

Figure 63: Reference vs. tested instrument, SN 12248, Niederzier II, PM₁₀

Page 116 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 17 Use of correction factors/terms (7.5.8.5–7.5.8.8)

Correction factors/terms (=calibration) shall be applied if the highest expanded uncertainty calculated for the tested instruments exceeds the relative expanded uncertainty specified under the requirements for data quality or the test demonstrates that the slope is significantly different from 1 and/or the ordinate intercept is significantly different from 0.

6.2 Equipment

Not required for this performance criterion.

6.3 Testing

See section

6.1 17 Expanded uncertainty (7.5.8.5 – 7.5.8.8)

6.4 Evaluation

If it emerges from the evaluation of raw data in accordance with 6.1. 17 Expanded uncertainty of AMS results (7.5.8.5–7.5.8.8) that $W_{AMS} > W_{dqo}$, (i.e. AMS uncertainty > 25%) i.e. the tested instrument is not found to be equivalent with the reference method, then it is permissible to use a correction factor or term which results from the regression equation for <u>the full data set</u>. The corrected values have to meet the requirements for all data sets or sub data sets. Moreover, a correction may also be used for the case that $W_{AMS} \le W_{dqo}$ in order to improve the accuracy of the tested instruments.

Three different situations may occur:

a) Slope b is not significantly different from 1: $|b-1| \le 2u(b)$

Axis intercept a is significantly different from 0: |a| > 2u(a)

b) Slope b is significantly different from 1: |b-1| > 2u(b)

Axis intercept a is not significantly different from 0: $|a| \le 2u(a)$

b) Slope b is significantly different from 1: |b-1| > 2u(b)

Axis intercept a is significantly different from 0: |a| > 2u(a)

concerning a)

The value of the axis intercept a may be used as a correction term to correct all input values y_i according to the following equation:

$$y_{i,corr} = y_i - a$$

The corrected values $y_{i,corr}$ may then serve to calculate the following new terms using linear regression:

$$y_{i,corr} = c + dx_i$$

and

$$u_{yi,corr}^{2} = \frac{RSS}{(n-2)} - u_{RM}^{2} + [c + (d-1)L]^{2} + u^{2}(a)$$

where u(a) = uncertainty of the axis intercept a, whose value was used to determine $y_{i,corr}$.

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

The algorithms for calculating axis intercepts and slopes as well as their variance by means of orthogonal regression are described in detail in annex B to [4].

concerning b)

The value of the slope b may be used as a correction term to correct all input values y_i according to the following equation:

$$y_{i,corr} = \frac{y_i}{b}$$

The corrected values $y_{i,corr}$ may then serve to calculate the following new terms using a new linear regression:

 $y_{i,\text{corr}} = c + dx_i$

and

$$u_{yi,corr}^{2} = \frac{RSS}{(n-2)} - u_{RM}^{2} + [c + (d-1)L]^{2} + L^{2}u^{2}(b)$$

where u(b) = uncertainty of the original slope b, whose value was used to determine $y_{i,corr}$.

The algorithms for calculating axis intercepts and slopes as well as their variance by means of orthogonal regression are described in detail in annex B to [9].

concerning c)

The values of the slope b and the axis intercept a may be used as correction terms to correct all input values y_i according to the following equation:

$$y_{i,corr} = \frac{y_i - a}{b}$$

The corrected values $y_{i,corr}$ may then serve to calculate the following new terms using a new linear regression:

$$y_{i,corr} = c + dx_i$$

and

$$u_{yi,corr}^{2} = \frac{RSS}{(n-2)} - u_{RM}^{2} + [c + (d-1)L]^{2} + L^{2}u^{2}(b) + u^{2}(a)$$

where u(b) = uncertainty of the original slope b, whose value was used to determine $y_{i,corr}$ and u(a) = uncertainty of the original axis intercept a, whose value was used to determine $y_{i,corr}$.

The algorithms for calculating axis intercepts and slopes as well as their variance by means of orthogonal regression are described in detail in annex B to [4].

The values for $u_{c_s,corr}$ are then used to calculate the combined relative uncertainty of the AMS after correction in accordance with the following equation:

$$w_{AMS,corr}^2 = \frac{u_{corr,yi=L}^2}{L^2}$$

The uncertainty $w_{AMS,corr}$ for the corrected data set is calculated at the 24h limit value using y_i as concentration at the limit value.

TÜV Rheinland Energy GmbH Air Pollution Control

Page 118 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

The relative expanded uncertainty W_{AMS,corr} is calculated using the following equation:

$$W_{AMS',corr} = k \cdot W_{AMS,corr}$$

Considering the large number of available test results, an expansion factor k=2 must be used.

The largest resulting uncertainty $W_{AMS,corr}$ is compared and assessed against the criteria for data quality of air quality measurements in accordance with EU Directive [8]. Two situations are conceivable:

1. $W_{AMS,corr} \le W_{dqo} \longrightarrow$ The tested instrument is deemed equivalent to the reference method.

2. $W_{AMS,corr} > W_{dqo} \rightarrow$ The tested instrument is not deemed equivalent to the reference method.

The expanded relative uncertainty W_{dqo} specified is 25%.

6.5 Assessment

After the use of correction factors, the candidate systems met the requirements for data quality of air quality monitors for all data sets.

Criterion satisfied? yes

The analysis of the total data set shows that for both $PM_{2.5}$ and PM_{10} the intercept is significantly different from 0 and the slope is significantly different from 1.

An axis intercept and slope correction of the entire data set (for each of $PM_{2.5}$ and PM_{10}) was performed and all data sets were re-evaluated using the corrected values.

All data sets meet the data quality requirements after correction.

When a measuring system is operated in the context of a measurement grid, the January 2010 version of the Guideline and standard EN 16450 require that the instruments are tested annually at a number of sites which in turn depends on the highest expanded uncertainty determined during equivalence testing. The criterion used for specifying the number of sites for annual testing is grouped into 5% steps (Guideline [9], Chapter 9.9.2, Table 6 and/or EN 16450 [4], Chapter 8.6.2, Table 5). It should be noted that the highest expanded uncertainty determined after applying the correction in was the range 20% to 25%.

The monitoring network operator or the competent authority of a member state is responsible for compliant implementation of the requirements for regular tests as described above. However, TÜV Rheinland recommends that the expanded uncertainty of the total data set (of all data) be used for this purpose, in this case 10.03 % ($PM_{2.5}$) and 19.17 % (PM_{10}) (uncorrected data set) and 9.01 % ($PM_{2.5}$) and % 9.71 (PM_{10}) (data set after axis intercept correction), respectively, which would require annual verification at 2 measurement locations.

Page 119 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.6 Detailed presentation of test results

Table 31 and Table 32 show the evaluation results of the equivalence test after applying the correction factor to the full data set.

Table 31: Summary of equivalence test results after intercept and slope correction, PM_{2.5}

Comparison candidate with reference according to Standard EN 16450:2017									
Candidate	Fidas Smart System	SN	12248 & 12250						
			Limit value	30	µg/m³				
Status of measured values	Data corrected		Allowed uncertainty	25	%				
All comparisons									
Uncertainty between Reference	0.51	µg/m³							
Uncertainty between Candidates	0.43	µg/m³							
	12248 & 12250								
Number of data pairs	363								
Slope b	1.001	not significant							
Uncertainty of b	0.013								
Ordinate intercept a	-0.010	not significant							
Uncertainty of a	0.132	-							
Expanded meas. uncertainty W _{CM}	9.01	%							

Air Pollution Control

Page 120 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

	Comparison o	candidate with refere			
Candidate	Fidas Smart System	Standard EN 16450:2	017 SN	12248 & 12250	
Gandidate	ridas offart System		Limit value	30	µg/m³
Status of measured values	Data corrected		Allowed uncertainty	25	%
		Cologne I			
Jncertainty between Reference	0.33	µg/m³			
Uncertainty between Candidates	0.45	µg/m³	1	10050	
Number of data naire	<u>12248</u> 44			12250 44	
Number of data pairs Slope b	1.061			1.012	
Uncertainty of b	0.020			0.019	
Ordinate intercept a	-0.367			-0.332	
Uncertainty of a	0.288			0.275	
Expanded meas. uncertainty W _{CM}	12.06	%		6.89	%
		Niederzier I			
Jncertainty between Reference	0.38	µg/m³			
Jncertainty between Candidates	0.51	µg/m³			
	12248			12250	
Number of data pairs	57			57	
Slope b	1.102			1.030	
Jncertainty of b	0.035			0.034	
Ordinate intercept a	-0.722			-0.584	
Jncertainty of a	0.401			0.385	
Expanded meas. uncertainty W _{CM}	18.79	%		10.36	%
		Cologne II			
Jncertainty between Reference	0.45	µg/m³			
Jncertainty between Candidates	0.32	µg/m³			
	12248			12250	
Number of data pairs	115			115	
Slope b	1.099			1.030	
Jncertainty of b	0.032			0.030	
Ordinate intercept a	-0.517			-0.431	
Jncertainty of a	0.244			0.230	
Expanded meas. uncertainty W _{CM}	17.82	%		7.55	%
		Bornheim			
Jncertainty between Reference	0.47	µg/m³			
Jncertainty between Candidates	0.54	µg/m³			
	12248			12250	
Number of data pairs	93			93	
Slope b	0.937			0.863	
Jncertainty of b	0.024			0.025	
Ordinate intercept a	1.061			1.155	
Jncertainty of a	0.256			0.261	
Expanded meas. uncertainty W _{CM}	10.99	%		21.98	%
		Bonn			
Jncertainty between Reference Jncertainty between Candidates	0.80 0.32	μg/m³ μg/m³			
	12248	µg/m	1	12250	
Number of data pairs	54			54	
Slope b	1.034			0.987	
Jncertainty of b	0.047			0.045	
Ordinate intercept a	-0.536			-0.516	
Jncertainty of a	0.458			0.437	
Expanded meas. uncertainty W _{CM}	9.95	%		10.84	%
		All comparisons			
Jncertainty between Reference	0.51	μg/m³			
Incertainty between Candidates	0.43	μg/m³			
	12248			12250	
Number of data pairs	363			363	
Slope b	1.032	significant		0.971	significant
Jncertainty of b	0.013			0.013	
Ordinate intercept a	-0.039	not significant		0.017	not significant
Jncertainty of a	0.134			0.131	
Expanded meas. uncertainty W _{CM}	10.99	%		10.64	%

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 121 of 271

Table 32: Summary of equivalence test results after intercept and slope correction, PM₁₀

Comparison candidate with reference according to Standard EN 16450:2017									
Candidate Fidas Smart System SN 12248 & 12250									
			Limit value	50	µg/m³				
Status of measured values	Corrected data		Allowed uncertainty	25	%				
All comparisons									
Uncertainty between Reference	0.63	µg/m³							
Uncertainty between Candidates	0.71	µg/m³							
	12248 & 12250								
Number of data pairs	433								
Slope b	1.004	not significant							
Uncertainty of b	0.013								
Ordinate intercept a	-0.069	not significant							
Uncertainty of a	0.242	•							
Expanded measured uncertainty WCM	9.71	%							

Page 122 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Comparison candidate with reference according to										
Candidate	Fidas Smart System	Standard EN 16450:20	SN	12248 & 12250						
			Limit value	50	µg/m³					
Status of measured values	Corrected data		Allowed uncertainty	25	%					
		Cologne I								
Jncertainty between Reference	0.26	µg/m³								
Uncertainty between Candidates	0.52	µg/m³		40050						
Number of data pairs	<u>12248</u> 53			12250 53						
Slope b	1.109			1.066						
Uncertainty of b	0.030			0.026						
Ordinate intercept a	-2.102			-1.639						
Jncertainty of a Expanded measured uncertainty W _{CM}	0.640	%		0.554 11.61	%					
Niederzier I										
Uncertainty between Reference 0.65 µg/m³										
Uncertainty between Candidates	0.69	μg/m³								
	12248			12250						
Number of data pairs	59			59						
Slope b Uncertainty of b	1.028 0.028			0.974 0.027						
Ordinate intercept a	0.251			0.574						
Uncertainty of a	0.575			0.555						
Expanded measured uncertainty W_{CM}	10.55	%		8.52	%					
		Cologne II								
Uncertainty between Reference	0.50	µg/m³								
Uncertainty between Candidates	0.42	µg/m³		10050						
Number of data pairs	<u>12248</u> 117			<u>12250</u> 117						
Slope b	1.037			0.973						
Uncertainty of b	0.031			0.027						
Ordinate intercept a	-0.011			0.327						
Uncertainty of a	0.397			0.350						
Expanded measured uncertainty W _{CM}	9.43	%		6.77	%					
		Bornheim								
Uncertainty between Reference	0.69	µg/m³								
Uncertainty between Candidates	0.52	µg/m³		40050						
Number of data pairs	<u>12248</u> 83			<u>12250</u> 83						
Slope b	1.028			0.982						
Uncertainty of b	0.053			0.053						
Ordinate intercept a	-0.218			0.086						
Uncertainty of a	0.948			0.954						
Expanded measured uncertainty W _{CM}	15.07	% Bonn		14.80	%					
Uncertainty between Reference	0.50	µg/m³								
Uncertainty between Candidates	0.50	μg/m³								
	12248			12250						
Number of data pairs	54			54						
Slope b Uncertainty of b	0.892 0.043			0.848 0.037						
Ordinate intercept a	1.265			1.810						
Uncertainty of a	0.723			0.625						
Expanded measured uncertainty W_{CM}	18.62	%		24.36	%					
		Niederzier II								
Uncertainty between Reference Uncertainty between Candidates	0.94 1.37	μg/m³ μg/m³								
		µg/III		12250						
	12248									
Number of data pairs	<u>12248</u> 67			67						
Slope b	67 0.987			67 0.905						
Slope b Uncertainty of b	67 0.987 0.029			67 0.905 0.028						
Number of data pairs Slope b Uncertainty of b Ordinate intercept a Uncertainty of a	67 0.987 0.029 0.972			67 0.905 0.028 0.784						
Slope b Uncertainty of b Ordinate intercept a Uncertainty of a	67 0.987 0.029	%		67 0.905 0.028	%					
Slope b Jncertainty of b Ordinate intercept a Jncertainty of a	67 0.987 0.029 0.972 0.608	% All comparisons		67 0.905 0.028 0.784 0.592	%					
Slope b Uncertainty of b	67 0.987 0.029 0.972 0.608			67 0.905 0.028 0.784 0.592	%					
Slope b Jncertainty of b Ordinate intercept a Jncertainty of a Expanded measured uncertainty W _{CM} Jncertainty between Reference	67 0.987 0.029 0.972 0.608 9.06 0.63 0.71	All comparisons		67 0.905 0.028 0.784 0.592 18.14	%					
Slope b Jncertainty of b Dridinate intercept a Jncertainty of a Expanded measured uncertainty W _{CM} Jncertainty between Reference Jncertainty between Candidates	67 0.987 0.029 0.972 0.608 9.06 0.63 0.71 12248	All comparisons µg/m ³		67 0.905 0.028 0.784 0.592 18.14 12250	%					
Slope b Jncertainty of b Drivertainty of a Expanded measured uncertainty W _{CM} Jncertainty between Reference Jncertainty between Candidates	67 0.987 0.029 0.972 0.608 9.06 0.63 0.71 12248 433	All comparisons µg/m³ µg/m³		67 0.905 0.028 0.784 0.592 18.14 18.14 12250 433						
Slope b Jncertainty of b Drdinate intercept a Jncertainty of a Expanded measured uncertainty W _{CM} Jncertainty between Reference Jncertainty between Candidates Number of data pairs Slope b	67 0.987 0.029 0.972 0.608 9.06 0.63 0.71 12248 433 1.035	All comparisons µg/m ³		67 0.905 0.028 0.784 0.592 18.14 12250 433 0.976						
Slope b Jncertainty of b Drdinate intercept a Jncertainty of a Expanded measured uncertainty W _{CM} Jncertainty between Reference Jncertainty between Candidates Number of data pairs Slope b Jncertainty of b	67 0.987 0.029 0.972 0.608 9.06 0.63 0.71 12248 433 1.035 0.014	All comparisons µg/m³ µg/m³ significant		67 0.905 0.028 0.784 0.592 18.14 12250 433 0.976 0.013	not significant					
Slope b Uncertainty of b Ordinate intercept a Uncertainty of a Expanded measured uncertainty W _{CM}	67 0.987 0.029 0.972 0.608 9.06 0.63 0.71 12248 433 1.035	All comparisons µg/m³ µg/m³		67 0.905 0.028 0.784 0.592 18.14 12250 433 0.976						

Page 123 of 271

6.1 18 Maintenance interval (7.5.7)

The maintenance interval of the AMS shall be at least 14 days.

6.2 Equipment

Not required for this performance criterion.

6.3 Testing

The maintenance interval is the longest time period without intervention as recommended by the manufacturer. The relevant body shall ensure that during this period the AMS does not need any maintenance or adjustment.

6.4 Evaluation

The manufacturer has prepared a maintenance plan for this measuring system. The shortest maintenance interval is 1 year (check with Monodust 1500 and check volume flow).

Please note: The European standard EN 16450 [4] contains more extensive requirements for the necessary frequency of calibrations, tests and maintenance work. This may make it necessary to check the AMS more frequently.

6.5 Assessment

The maintenance interval is 1 year. Criterion satisfied? yes

6.6 Detailed presentation of test results

Chapter 6.1 of the manual lists the necessary maintenance work.

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

6.1 **19 Automatic diagnostic check (7.5.4)** *Automatic checks must be possible.*

6.2 Equipment

Not required for this performance criterion.

6.3 Testing

The current operating status of the measuring system is continuously monitored and any issues will be flagged via a series of different error messages. The current state of monitored parameters can be displayed on the instrument itself and is recorded as part of data logging. An error message is flagged if performance characteristics are outside the permissible range of tolerance.

6.4 Evaluation

The instrument provides all features described in the operation manual. The current operating status is continuously monitored and any issues will be flagged via a series of different warning messages. Data recording includes all monitored parameters.

6.5 Assessment

The instrument provides all features described in the operation manual. The current operating status is continuously monitored and any issues will be flagged via a series of different warning messages. Data recording includes all monitored parameters. Criterion satisfied? yes

6.6 Detailed presentation of test results

Chapter 5 of the manual describes all possible alarms and status codes.

Page 125 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

6.1 20 Checks of temperature sensors, pressure and/or humidity sensors

The verifiability of temperature sensors, pressure and/or humidity sensors shall be checked for the AMS. Deviations determined shall be within the following criteria: $T \pm 2 \degree C$ $p \pm 1 \ kPa$ $rF \pm 5 \%$

6.2 Equipment

Barometer, thermometer and hygrometer.

6.3 Testing

This minimum requirement serves to verify whether AMS sensors for temperature, pressure and humidity, which are necessary for correct AMS performance, are accessible and can be checked at the field test site location. In the event, checks cannot be performed on site, this has to be documented. AMS sensors were checked at the beginning and at the end of each field test.

6.4 Evaluation

The AMS uses a combined weather sensor to record the outside temperature and the relative humidity. In the Fidas Smart 100 variant, this is mounted directly on the inlet of the housing ventilation. Since the housing is continuously ventilated, the sensor is permanently supplied with fresh air. In the Fidas Smart 100 E variant, this sensor is mounted on the sampling tube below the sampling head.

The air pressure is measured in the unit for both variants.

Relying on transfer standards, it is easily possible to perform comparison measurements on site at any time and to adjust the sensors. The sensors' deviations remained within the required ranges.

6.5 Assessment

It is possible to check and adjust the sensors for determining ambient temperature, ambient pressure and relative humidity on site. The sensors' deviations remained within the required ranges.

Criterion satisfied? yes

6.6 Detailed presentation of test results

Not required for this performance criterion.

Page 126 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

7. Recommendations for use in practice

7.1 Work in the maintenance interval

The tested measuring systems require regular performance of the following tasks:

Every year:

- Clean the sample inlet
- Test the power supply
- Check sensors for temperature, pressure and moisture
- Check the volume flow
- Calibrate sensors for temperature, pressure and moisture
- Calibrate the throughput
- Leak test
- Check zero measurements

Further details can be found in chapter 6 of the user manual.

Please note: The European standard EN 16450 [4] contains more extensive requirements for the necessary frequency of calibrations, tests and maintenance work. EN 16450 [4], section 8.2.4 requires the status readings of operational parameters to be checked daily (on working days). The volume flow and the sensors for temperature, pressure and humidity must be checked every 3 months.

Page 127 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Environmental Protection/Air Pollution Control

h. Zaum

Dipl.-Ing. Guido Baum

P. Hausley

Dipl.-Ing. Fritz Hausberg

Cologne, 15 September 2022 936/21250983/B

Page 128 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

8. Bibliography

- [1] VDI Standard 4202, part 3, "Automated measuring systems for air quality monitoring -Performance test, declaration of suitability and certification of measuring systems for point-related measurement of mass concentration for particulate air pollutants", February 2019
- [2] VDI standard 4203, part 1, "Automated measuring systems and data evaluation systems for emission monitoring – Performance test, declaration of suitability and certification of stationary automated measuring systems and check of the quality management system of the manufacturer", July 2017
- [3] European standard EN 12341, "Ambient air Standard gravimetric measurement method for the determination of the PM₁₀ or PM_{2,5} mass concentration of suspended particulate matter"; German version EN 12341:2014
- [4] European standard EN 16450 "Ambient air Automated measuring systems for the measurement of the concentration of particulate matter" (PM10; PM2.5, German version dated July 2017)
- [5] Guideline "Demonstration of Equivalence of Ambient Air Monitoring Methods", English version dated January 2010
- [6] Operating manual Fidas Smart System, V1.0_09/22
- [7] Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 129 of 271

9. Appendices

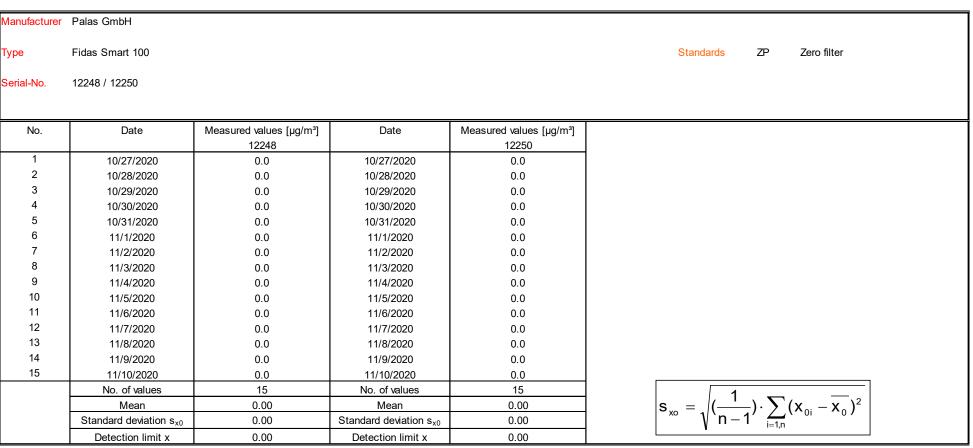
Appendix 1	Measured and calculated values
Annex 1:	Zero level and detection limit
Annex 2:	Flow rate accuracy
Annex 3:	Temperature dependence of the zero point and sensitivity
Annex 4:	Independence of supply voltage
Annex 5:	Measured values from the field test sites
Appendix 2:	Methods used for filter weighing
Appendix 3	CE Certificate and Certificate of Accreditation
Appendix 4:	Operation manual

Page 130 of 271

Page 1 of 2

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

Annex 1


Detection limit

Manufacturer	Palas GmbH				
Туре	Fidas Smart 100				Standards ZP Zero filter
Serial-No.	12248 / 12250				
No.	Date	Measured values [µg/m³]	Date	Measured values [µg/m³]	
		12248		12250	
1	10/27/2020	0.0	10/27/2020	0.0	1
2	10/28/2020	0.0	10/28/2020	0.0	
3	10/29/2020	0.0	10/29/2020	0.0	
4	10/30/2020	0.0	10/30/2020	0.0	
5	10/31/2020	0.0	10/31/2020	0.0	
6	11/1/2020	0.0	11/1/2020	0.0	
7	11/2/2020	0.0	11/2/2020	0.0	
8	11/3/2020	0.0	11/3/2020	0.0	
9	11/4/2020	0.0	11/4/2020	0.0	
10	11/5/2020	0.0	11/5/2020	0.0	
11	11/6/2020	0.0	11/6/2020	0.0	
12	11/7/2020	0.0	11/7/2020	0.0	
13	11/8/2020	0.0	11/8/2020	0.0	
14	11/9/2020	0.0	11/9/2020	0.0	
15	11/10/2020	0.0	11/10/2020	0.0	
	No. of values	15	No. of values	15	
	Mean	0.00	Mean	0.00	$ \mathbf{s}_{xo} = \frac{1}{(\frac{1}{2} - 1)} \cdot \sum (\mathbf{x}_{0i} - \mathbf{x}_{0})^{2}$
	Standard deviation s_{x0}	0.00	Standard deviation s_{x0}	0.00	$\mathbf{s}_{xo} = \sqrt{(\frac{1}{n-1}) \cdot \sum_{i=1,n} (\mathbf{x}_{0i} - \overline{\mathbf{x}_0})^2}$
	Detection limit x	0.00	Detection limit x	0.00	

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Annex 1

Detection limit

Page 131 of 271

Page 2 of 2

Page 132 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

Annex 2

Flow rate accuracy

Manufacturer	Palas G	SmbH						
Туре	Fidas S	mart 100						Nominal flow rate [I/min]
	10010	10050						
Serial-No.	12248 /	12250						
	1		12248			12250		
Temperature 1	-20°C	No.	Date/Time	Measured value [l/min]	No.	Date/Time	Measured value [l/min]	
		1	12/17/2020 8:10	1.00	1	12/17/2020 8:15	16.35	
		2	12/17/2020 8:20	1.02	2	12/17/2020 8:25	16.41	
		3	12/17/2020 8:30	1.02	3	12/17/2020 8:35	16.44	
		4	12/17/2020 8:40	1.00	4	12/17/2020 8:45	16.39	
		5	12/17/2020 8:50	1.01	5	12/17/2020 8:55	16.42	
		6	12/17/2020 9:00	1.03	6	12/17/2020 9:05	16.36	
		7	12/17/2020 9:10	1.05	7	12/17/2020 9:15	16.33	
		8	12/17/2020 9:20	1.06	8	12/17/2020 9:25	16.44	
		9	12/17/2020 9:30	1.07	9	12/17/2020 9:35	16.38	
		10	12/17/2020 9:40	1.07	10	12/17/2020 9:45	16.41	
			Mean	1.03		Mean	16.39	
			12248			12250		
Temperature 2	50°C	No.	Date/Time	Measured value [l/min]	No.	Date/Time	Measured value [l/min]	
		<u>1</u> 2	12/17/2020 15:30 12/17/2020 15:40		<u>1</u> 2	12/17/2020 15:35 12/17/2020 15:45		
		3	12/17/2020 15:40		3	12/17/2020 15:45		
		4	12/17/2020 15:50		4	12/17/2020 15:55		
		5	12/17/2020 16:00		5	12/17/2020 16:05		
		6	12/17/2020 16:10		6	12/17/2020 16:15		
		7	12/17/2020 16:30		7	12/17/2020 16:25	16.95	
		8	12/17/2020 16:40		8	12/17/2020 16:45		
		9	12/17/2020 16:50		9	12/17/2020 16:55		
					10	12/17/2020 17:05		
		10	12/17/2020 17:00	I.UO	10	12/17/2020 17:00	10.00	

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Page 133 of 271

Dependence of zero point on surrounding temperature for PM_{2.5} Annex 3

Manufacturer Palas GmbH

Fidas Smart 100 Туре

SN 12248 / SN 12250 Serial-No.

			Measurement 1	Measurement 2	Measurement 3		
SN 12248		Temperature	Measured value	Measured value		Mean value of 3 measurements	Mean value at 20°C
	No.	[°C]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
	1	20	0.0	0.0	0.0	0.0	0.0
	2	-20	0.0	0.0	0.0	0.0	
Zero	3	20	0.0	0.0	0.0	0.0	
	4	50	0.0	0.0	0.0	0.0	
	5	20	0.0	0.0	0.0	0.0	
SN 12250		Temperature	Measured value	Measured value	Measured value	Mean value of 3 measurements	Mean value at 20°C
SN 12250	No.	Temperature [°C]	Measured value [µg/m³]	Measured value [µg/m³]	Measured value [µg/m³]	Mean value of 3 measurements [µg/m³]	Mean value at 20°C [µg/m³]
SN 12250	No. 1	•					
SN 12250	<u>No.</u> 1 2	[°C]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
SN 12250 Zero	1	[°C] 20	[µg/m³] 0.0	[µg/m³] 0.0	[µg/m³] 0.0	[µg/m³] 0.0	[µg/m³]
	1 2	[°C] 20 -20	[µg/m³] 0.0 0.0	[μg/m³] 0.0 0.0	[µg/m³] 0.0 0.0	[μg/m³] 0.0 0.0	[µg/m³]

Page 2 of 4

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

0.0

Manufacturer	Palas GmbH	1									
Туре	Fidas Smart 100										
Serial-No.	SN 12248 / SN 12250										
			Measurement 1	Measurement 2	Measurement 3						
SN 12248		Temperature	Measured value	Measured value	Measured value	Mean value of 3 measurements	Mean value at 20°C				
	No.	[°C]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]				
	1	20	0.0	0.0	0.0	0.0	0.0				
	2	-20	0.0	0.0	0.0	0.0					
Zero	3	20	0.0	0.0	0.0	0.0					
	4	50	0.0	0.0	0.0	0.0					
	5	20	0.0	0.0	0.0	0.0					
SN 12250		Temperature	Measured value	Measured value	Measured value	Mean value of 3 measurements	Mean value at 20°C				
	No.	[°C]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]				
	1	20	0.0	0.0	0.0	0.0	0.0				
	2	-20	0.0	0.0	0.0	0.0					
Zero	3	20	0.0	0.0	0.0	0.0					
	4	50	0.0	0.0	0.0	0.0					

0.0

0.0

0.0

Dependence of zero point on surrounding temperature for PM₁₀

5

20

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Annex 3

Dependence of span on surrounding temperature for $PM_{2.5}$

Manufacturer Palas GmbH

TypeFidas Smart 100

Serial-No. SN 12248 / SN 12250

			Measurement 1	Measurement 2	Meaurement 3		
SN 12248		Temperature	Measured value	Measured value	Measured value	Mean value of 3 measurements	Mean value at 20°C
	No.	[°C]	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
	1	20	25.0	24.9	24.8	24.9	25.0
	2	-20	24.9	24.9	24.8	24.9	
Span	3	20	24.9	25.0	24.9	25.0	
	4	50	25.6	25.5	25.5	25.5	
	5	20	25.0	25.0	25.1	25.0	
SN 12250		Temperature	Measured value	Measured value	Measured value	Mean value of 3 measurements	Mean value at 20°C
	No.	[°C]	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
	1	20	24.4	24.5	24.5	24.5	24.5
	2	-20	24.2	24.3	23.7	24.0	
Span	3	20	24.5	24.4	24.4	24.4	
	4	50	25.1	25.2	25.4	25.2	
	5	20	24.6	24.6	24.5	24.5	

Page 135 of 271

Used test standard MonoDust 1500

Page 3 of 4

Page 4 of 4

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Annex 3

Dependence of span on surrounding temperature for $\ensuremath{\text{PM}_{10}}$

Manufacturer Palas GmbH

Used test standard MonoDust 1500

TypeFidas Smart 100

Serial-No. SN 12248 / SN 12250

			Measurement 1	Measurement 2	Meaurement 3		
SN 12248		Temperature	Measured value	Measured value	Measured value	Mean value of 3 measurements	Mean value at 20°C
	No.	[°C]	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
	1	20	40.0	40.0	40.0	40.0	40.0
	2	-20	40.0	40.0	40.0	40.0	
Span	3	20	40.0	40.0	40.0	40.0	
	4	50	39.9	39.9	39.9	39.9	
	5	20	40.0	40.0	40.0	40.0	
SN 12250		Temperature	Measured value	Measured value	Measured value	Mean value of 3 measurements	Mean value at 20°C
	No.	[°C]	µg/m³	µg/m³	µg/m³	µg/m³	µg/m³
	1	20	40.0	40.0	40.0	40.0	40.0
	2	-20	40.1	40.0	40.5	40.2	
Span	3	20	40.0	40.0	40.0	40.0	
	4	50	40.0	40.0	39.9	40.0	
	5	20	40.0	40.0	40.0	40.0	

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 137 of 271

Page 1 of 2

Annex 4

Dependence of span on supply voltage for PM_{2.5}

Manufacturer	Palas GmbH	1								
Туре	Fidas Smart	: 100		Used test standard	b	MonoDust 1500				
Serial-No.	SN 12248 /	N 12248 / SN 12250								
			Measurement 1	Measurement 2	Measurement 3					
SN 12248		Mains voltage	Measured value	Measured value	Measured value	Mean value of 3 measurements				
	No.	[V]	µg/m³	µg/m³	µg/m³	µg/m³				
	1	230	25.1	25.0	25.0	25.0				
	2	195	25.1	25.0	25.0	25.0				
Span	3	230	25.1	25.1	25.1	25.1				
	4	253	25.1	24.9	24.9	25.0				
	5	230	25.1	25.0	24.9	25.0				
SN 12250		Mains voltage	Measured value	Measured value	Measured value	Mean value of 3 measurements				
	No.	[V]	µg/m³	µg/m³	µg/m³	µg/m³				
	1	230	24.6	24.5	24.5	24.5				
	2	195	24.7	24.4	24.4	24.5				
Span	3	230	24.6	24.6	24.6	24.6				
	4	253	24.5	24.4	24.5	24.5				
	5	230	24.4	24.2	24.2	24.3				

1490871_2022_936_21250983B_EN.docx

Page 138 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

Annex 4		D	Dependence of span on supply voltage for PM ₁₀							
Manufacturer	Palas Gmbł	H								
Туре	Fidas Smar	t 100		Used test standard	MonoDust 1500					
Serial-No.	SN 12248 /	SN 12250								
			Measurement 1	Measurement 2	Measurement 3]				
SN 12248		Mains voltage	Measured value	Measured value	Measured value	Mean value of 3 measurements				
	No.	[V]	µg/m³	µg/m³	µg/m³	µg/m³				
	1	230	40.0	40.0	40.0	40.0				
	2	195	40.0	40.0	40.0	40.0				
Span	3	230	40.0	40.0	40.0	40.0				
	4	253	40.0	40.0	40.0	40.0				
	5	230	40.0	40.0	40.0	40.0				
SN 12250		Mains voltage	Measured value	Measured value	Measured value	Mean value of 3 measurements				
	No.	[V]	µg/m³	µg/m³	µg/m³	μg/m³				
	1	230	40.0	40.0	40.0	40.0				
	2	195	40.0	40.0	40.0	40.0				
Span	3	230	40.0	40.0	40.0	40.0				
	4	253	40.0	40.0	40.0	40.0				
	5	230	40.0	40.1	40.1	40.1				

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Annex 5

Measured values from field test sites, related to actual conditions

Manufacturer	Palas GmbH
Type of instrument	Fidas Smart 100

Type of instrument i huas offiait for

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
1	1/22/2021	12.6	12.6	18.1	18.0	69.7	11.4	10.9	14.3	13.9		Cologne
2	1/23/2021			5.8	6.1		5.1	4.8	6.6	6.4		Cologne
3	1/24/2021	9.3	9.3	11.7	11.7	79.7	9.3	8.9	11.6	11.5		Cologne
4	1/25/2021	15.9	15.6	21.1	21.3	74.3	14.7	14.1	17.8	17.5		Cologne
5	1/26/2021	9.1	9.1	12.6	13.0	71.3	8.6	8.3	10.8	10.9		Cologne
6	1/27/2021	7.6	7.8	10.2	10.1	76.0	7.1	6.8	9.1	9.1		Cologne
7	1/28/2021	4.6	4.2	6.4	6.7	66.7	3.7	3.5	5.6	5.6		Cologne
8	1/29/2021	7.5	7.2	11.4	10.7	66.4	7.0	6.7	9.4	9.4		Cologne
9	1/30/2021			8.0	7.3		6.8	6.4	8.0	7.8		Cologne
10	1/31/2021	7.7	6.8	9.0	8.6	82.6	7.7	7.4	8.7	8.6		Cologne
11	2/1/2021	7.8	6.9	9.3	9.2	79.5	7.3	6.9	9.0	8.7		Cologne
12	2/2/2021	4.9	4.6	9.2	9.1	51.9	4.8	4.6	7.6	7.5		Cologne
13	2/3/2021	5.3	4.5	9.3	8.8	53.9	4.5	4.3	7.5	7.6		Cologne
14	2/4/2021	5.7	5.4	11.9	12.1	46.2	5.1	4.9	8.9	8.9		Cologne
15	2/5/2021	9.0	9.2	13.6	13.8	66.2	9.3	8.8	12.5	12.3		Cologne
16	2/6/2021			6.4	7.0		5.7	5.4	6.8	6.8		Cologne
17	2/7/2021	12.7	12.1	14.4	14.6	85.4	13.3	12.9	14.6	14.5		Cologne
18	2/8/2021	18.1	17.9	22.9	23.2	78.0	18.8	18.0	22.6	22.4		Cologne
19	2/9/2021	20.1	20.1	24.6	24.7	81.8	19.5	18.9	21.5	21.8		Cologne
20	2/10/2021	14.8	14.8	17.8	17.8	83.4	13.3	12.7	14.4	14.2		Cologne
21	2/11/2021	10.8	11.0	14.6	14.6	74.6	10.0	9.7	14.8	14.7		Cologne
22	2/12/2021			10.4	10.0		7.2	7.0	10.9	10.9		Cologne
23	2/13/2021			8.4	8.4		6.3	6.1	8.7	8.6		Cologne
24	2/14/2021	6.7	6.6	9.9	9.9	66.8	5.9	5.6	9.8	9.8		Cologne
25	2/15/2021	11.1	11.2	15.1	14.6	75.0	10.6	10.2	12.8	12.7		Cologne
26	2/16/2021	6.6	7.1	11.0	10.9	62.6	6.9	6.8	9.8	9.8		Cologne
27	2/17/2021	5.0	5.5	10.5	10.2	50.9	5.6	5.4	8.5	8.5		Cologne
28	2/18/2021	4.6	5.0	9.6	9.0	51.5	5.1	5.0	8.3	8.5		Cologne
29	2/19/2021	5.2	6.1	9.1	9.0	61.9	6.0	5.8	9.2	9.1		Cologne
30	2/20/2021			22.1	22.1		10.9	10.5	21.6	21.4		Cologne

Page 139 of 271

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Page 1 of 16

Page 140 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Page 2 of 16

Manufacturer	Palas GmbH
Type of instrument	Fidas Smart 100
Serial-No.	SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
31	2/21/2021	9.3	9.4	16.0	16.1	58.5	9.0	8.6	15.9	15.8		Cologne I
32	2/22/2021	15.2	15.4	28.5	28.9	53.3	16.5	15.8	31.1	30.2		Cologne I
33	2/23/2021	17.9	18.4	39.5	39.9	45.6	19.8	18.8	44.0	41.9		Cologne I
34	2/24/2021	23.5	24.6	61.3	62.3	38.9	27.4	26.1	68.0	64.4		Cologne I
35	2/25/2021	19.8	20.8	41.7	41.9	48.5	21.0	20.1	41.8	40.5		Cologne I
36	2/26/2021	11.5	12.4	20.5	20.6	58.1	12.8	12.3	17.3	17.2		Cologne I
37	2/27/2021			16.7	16.8		13.8	13.2	15.8	15.6		Cologne I
38	2/28/2021	13.3	13.6	19.7	20.0	67.7	14.4	13.7	17.4	17.0		Cologne I
39	3/1/2021	11.3	11.7	16.3	16.8	69.5	13.7	13.0	18.1	17.4		Cologne I
40	3/2/2021	16.0	16.4	26.0	25.8	62.5	16.2	15.3	23.5	22.7		Cologne I
41	3/3/2021	34.6	34.8	57.3	57.5	60.4	35.0	33.5	51.6	51.1		Cologne I
42	3/4/2021	17.2	16.9	24.1	24.0	70.9	17.4	16.8	20.2	20.2		Cologne I
43	3/5/2021	14.5	14.3	19.4	20.2	72.7	12.5	11.8	14.9	14.5		Cologne I
44	3/6/2021			19.9	19.6		15.8	14.8	16.2	15.9		Cologne I
45	3/7/2021	17.3	17.7	24.1	24.2	72.5	16.8	16.0	19.0	18.8		Cologne I
46	3/8/2021	40.7	40.6	53.1	52.2	77.2	40.9	39.1	43.6	43.2		Cologne I
47	3/9/2021	14.7	14.8	19.5	19.5	75.7	14.8	14.1	17.0	16.5		Cologne I
48	3/10/2021	12.0	12.3	15.5	15.6	77.8	12.1	11.7	15.7	15.0		Cologne I
49	3/11/2021	3.7	3.8	10.5	10.2	36.3	4.6	4.4	10.1	10.3		Cologne I
50	3/12/2021	3.4	3.9	7.4	8.0	47.8	4.6	4.4	7.1	7.0		Cologne I
51	3/13/2021			8.5	8.5		4.5	4.3	8.0	8.1		Cologne I
52	3/14/2021	4.3	3.7	7.0	7.3	56.3	5.4	5.2	7.3	7.3		Cologne I
53	3/15/2021	3.5	3.4	11.0	11.3	31.1	4.9	4.7	9.3	9.4		Cologne I
54	4/17/2021	14.3	13.4	25.4	26.7	53.2	11.8	11.1	20.2	20.1		Niederzier I
55	4/18/2021	14.6	14.1	21.7	22.6	64.8	12.1	11.4	18.1	17.6		Niederzier I
56	4/19/2021	25.3	24.6	36.4	37.3	67.8	22.9	21.2	29.5	27.6		Niederzier I
57	4/20/2021	19.4	19.3	29.1	29.5	66.0	22.1	20.7	29.6	27.7		Niederzier I
58	4/21/2021	25.8	25.6	37.3	37.6	68.6	26.3	24.6	34.8	33.6		Niederzier I
59	4/22/2021	8.7	8.0	25.0	25.2	33.4	9.7	9.3	22.0	21.5		Niederzier I
60	4/23/2021	10.8	11.0	27.1	27.7	39.8	11.1	10.4	25.8	23.7		Niederzier I

Annex 5

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Annex 5

Measured values from field test sites, related to actual conditions

Manufacturer	Palas GmbH
Type of instrument	Fidas Smart 100

Type of instrument i has officit to

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
61	4/24/2021	11.2	10.7	28.1	28.3	38.8	10.5	9.9	25.2	23.3		Niederzier
62	4/25/2021	10.3	10.4	20.3	20.5	50.8	10.9	10.3	19.3	19.1		Niederzier
63	4/26/2021	11.0	11.0	29.0	29.7	37.4	10.6	10.1	26.7	26.1		Niederzier
64	4/27/2021	14.2	14.4	38.0	38.8	37.3	12.6	12.1	36.9	36.1		Niederzie
65	4/28/2021	13.3	13.6	34.9	35.3	38.3	13.0	12.3	34.9	34.0		Niederzie
66	4/29/2021	17.3	17.9	27.2	27.3	64.7	16.9	15.6	27.4	25.6		Niederzie
67	4/30/2021	19.0	19.4	31.5	32.1	60.3	20.7	19.4	28.6	27.5		Niederzie
68	5/1/2021	19.0	19.3	25.7	26.4	73.6	20.4	19.0	24.1	23.1		Niederzie
69	5/2/2021	8.6	8.7	13.3	13.6	64.4	8.7	8.2	12.4	12.4		Niederzie
70	5/3/2021	8.5	8.5	14.9	14.6	57.7	8.2	7.6	15.1	13.8		Niederzie
71	5/4/2021										Storm	Niederzie
72	5/5/2021	6.3	6.1	10.5	10.5	59.4	5.1	4.8	9.9	9.4		Niederzie
73	5/6/2021	6.2	5.9	10.2	10.4	58.6	5.4	5.0	9.2	9.7		Niederzie
74	5/7/2021	13.5	12.4	13.7	14.3	92.6	11.3	10.6	13.9	13.4		Niederzie
75	5/8/2021	6.1	7.0	12.2	12.7	53.0	6.8	6.4	12.8	12.6		Niederzie
76	5/9/2021	6.0	6.6	11.6	12.6	51.8	4.9	4.6	12.1	11.8		Niederzie
77	5/10/2021	4.9	5.0	8.1	8.0	61.1	2.9	2.8	9.2	8.8		Niederzie
78	5/11/2021	4.2	5.1	9.7	10.3	46.9	5.0	4.9	9.2	9.7		Niederzie
79	5/12/2021	6.1	6.8	12.9	13.7	48.5	6.2	5.9	11.2	11.7		Niederzie
80	5/13/2021	4.7	5.5	12.4	12.6	40.7	6.2	5.9	12.7	12.3		Niederzie
81	5/14/2021	3.3	3.4	6.2	6.5	52.4	2.6	2.5	6.0	5.9		Niederzie
82	5/15/2021	2.8	3.4	5.0	5.0	61.8	3.0	2.8	5.8	5.8		Niederzie
83	5/16/2021	3.0	2.6	6.1	6.3	45.5	3.0	2.9	6.4	6.3		Niederzie
84	5/17/2021	3.5	3.7	7.1	7.3	50.1	3.9	3.6	7.1	7.0		Niederzie
85	5/18/2021	5.9	5.5	11.2	11.9	49.6	7.3	7.0	11.4	11.5		Niederzie
86	5/19/2021	3.3	3.5	8.5	8.1	40.8	4.4	4.3	8.8	8.9		Niederzie
87	5/20/2021	0.0	0.0	8.4	8.7		7.2	6.7	11.2	10.5		Niederzie
88	5/21/2021	4.5	3.9	11.5	11.5	36.7	3.9	3.8	12.4	12.7		Niederzie
89	5/22/2021	2.5	2.0	6.0	5.7	38.8	2.7	2.6	7.1	6.9		Niederzie
90	5/23/2021	2.6	2.5	5.6	5.0	47.4	2.5	2.4	5.7	5.8		Niederzie

Page 141 of 271

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Page 3 of 16

Page 142 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Page 4 of 16

Manufacturer Type of instrume	Palas GmbH nt Fidas Smart 100										PM10 + PM2.5 Measured values in	n µg/m³ (ACT)
Serial-No.	SN 12248 / SN 122	250										
No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
91	5/24/2021	2.0	2.2	4.7	4.5	46.1	1.6	1.5	4.6	4.7	Î	Niederzier
92	5/25/2021	1.9	2.1	4.8	4.3	44.5	2.2	2.1	5.4	5.1		Niederzier
93	5/26/2021	3.3	3.6	7.5	7.3	46.6	3.6	3.4	7.4	7.2		Niederzier
94	5/27/2021	6.5	6.2	13.4	13.2	47.7	8.6	8.1	12.5	12.8		Niederzier
95	5/28/2021			16.7	17.1		9.0	8.5	16.8	16.2		Niederzier
96	5/29/2021	8.7	8.7	23.2	24.0	36.9	8.9	8.5	20.7	19.8		Niederzier
97	5/30/2021	6.6	6.8	14.4	15.0	45.8	8.6	8.2	15.7	15.0		Niederzier
98	5/31/2021	9.3	9.2	22.5	24.4	39.4	8.6	8.3	23.3	22.1		Niederzier
99	6/1/2021	9.8	8.7	23.6	26.3	37.1	8.2	7.8	26.9	26.6		Niederzier
100	6/2/2021	12.0	11.3	32.5	36.3	33.8	9.8	9.4	34.6	34.1		Niederzier
101	6/3/2021	6.7	6.3	11.9	13.4	51.2	7.3	7.0	13.3	13.0		Niederzier
102	6/4/2021	14.1	13.8	21.0	21.4	65.6	16.3	15.3	23.7	22.4		Niederzier
103	6/5/2021	20.9	20.1	27.9	29.1	71.8	21.7	20.3	27.4	25.6		Niederzier
104	6/6/2021	19.5	18.5	24.3	24.7	77.5	19.0	18.1	22.4	21.3		Niederzier
105	6/7/2021	14.8	14.3	22.3	22.9	64.5	16.7	16.0	23.0	22.1		Niederzier
106	6/8/2021	16.5	16.2	25.9	26.8	62.1	20.7	19.7	29.0	27.7		Niederzier
107	6/9/2021	17.2	16.8	24.8	25.5	67.8	21.6	20.6	29.1	27.8		Niederzier
108	6/10/2021	8.3	7.4	18.2	19.6	41.5	7.3	7.0	18.9	18.0		Niederzier
109	6/11/2021	8.5	7.8	14.3	14.7	56.0	8.7	8.2	16.3	15.7		Niederzier
110	6/12/2021	7.3	6.9	13.3	13.7	52.5	8.5	8.2	15.9	15.4		Niederzier
111	6/13/2021	7.8	7.6	19.5	20.7	38.3	8.5	8.3	21.1	20.8		Niederzier
112	6/14/2021	12.2	11.2	27.6	29.1	41.2	9.1	8.8	24.9	24.8		Niederzier
113	6/15/2021	11.7	10.7	24.5	25.6	44.7	10.2	9.7	23.9	22.4		Niederzier
114	7/1/2021	6.1	5.0	11.1	11.2	49.6	7.4	7.1	11.3	11.5		Cologne I
115	7/2/2021	7.0	5.8	11.8	12.9	51.9	8.5	8.3	14.1	13.9		Cologne I
116	7/3/2021	9.9	8.9	13.8	14.2	67.0	8.6	8.2	13.3	12.7		Cologne I
117	7/4/2021	6.8	6.1	10.1	10.6	62.3	6.8	6.4	12.1	11.6		Cologne I
118	7/5/2021	3.4	2.8	7.1	7.5	42.9	2.6	2.5	7.4	7.3		Cologne I
119	7/6/2021	4.9	3.5	9.3	10.0	43.7	3.2	3.1	10.0	9.4		Cologne II
120	7/7/2021	5.0	7.2	10.8	11.3	55.4	4.2	4.1	10.2	10.0		Cologne

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Annex 5

Measured values from field test sites, related to actual conditions

Manufacturer	Palas GmbH
Type of instrument	Fidas Smart 100

Type of motione indus of are rec

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
121	7/8/2021	7.6	7.0	14.3	15.0	49.6	6.1	5.8	12.2	11.5		Cologne
122	7/9/2021	9.2	8.2	15.2	15.7	56.4	11.1	10.5	17.5	16.5		Cologne
123	7/10/2021	7.2	6.6	10.7	11.0	63.7	7.7	7.3	12.8	12.0		Cologne
124	7/11/2021	6.1	6.0	10.1	10.5	59.1	7.9	7.4	12.7	12.1		Cologne
125	7/12/2021	7.0	6.9	10.8	11.1	63.6	7.3	6.9	12.3	11.7		Cologne
126	7/13/2021	8.1	8.9	12.8	13.0	65.7	8.9	8.1	13.4	12.6		Cologne
127	7/16/2021			19.7	19.5		13.2	12.4	20.5	20.0	Power cut	Cologne
128	7/17/2021	9.5	9.3	16.2	17.4	56.0	10.9	10.2	16.9	16.4	storm 07/14/2021	Cologn
129	7/18/2021	6.2	6.3	9.7	11.2	59.7	5.2	4.9	10.2	9.5		Cologn
130	7/19/2021	9.2	9.3	13.6	14.3	66.2	10.2	9.5	14.2	13.6		Cologn
131	7/20/2021	11.6	11.4	17.9	18.5	63.3	12.2	11.4	17.5	17.0		Cologn
132	7/21/2021	8.9	9.1	12.9	13.6	67.8	7.7	7.1	12.4	11.7		Cologn
133	7/22/2021	12.2	12.6	17.6	19.0	67.6	10.7	9.9	16.7	15.8		Cologn
134	7/23/2021	10.1	10.5	16.4	17.2	61.2	10.7	9.9	17.5	16.3		Cologn
135	7/24/2021	11.9	12.1	17.9	18.5	65.9	12.5	11.4	18.0	17.0		Cologn
136	7/25/2021	6.6	7.1	11.6	11.7	59.1	7.1	6.6	12.5	12.1		Cologn
137	7/26/2021			8.0	8.4		4.0	3.7	9.0	8.4		Cologn
138	7/27/2021	5.2	5.1	9.7	9.8	53.4	5.4	5.0	10.4	9.9		Cologn
139	7/28/2021	5.4	5.1	10.3	10.5	50.4	5.0	4.7	10.5	10.1		Cologn
140	7/29/2021	5.1	4.8	9.7	9.9	50.8	3.9	3.7	9.2	8.8		Cologn
141	7/30/2021	6.3	5.0	12.3	12.2	46.0	5.1	4.9	11.9	11.6		Cologn
142	7/31/2021	4.2	3.7	7.3	7.6	53.2	3.2	3.0	7.9	7.6		Cologn
143	8/1/2021	4.8	3.4	6.7	7.0	59.7	3.8	3.6	7.5	7.1		Cologn
144	8/2/2021	5.7	4.4	8.4	9.4	56.7	5.3	5.0	9.4	8.8		Cologn
145	8/3/2021	6.2	5.0	8.2	9.2	64.2	5.4	4.9	8.7	8.4		Cologn
146	8/4/2021	9.4	8.4	13.8	14.7	62.7	11.9	10.9	16.9	15.5		Cologn
147	8/5/2021	6.8	6.0	10.2	10.2	62.4	8.3	7.7	12.4	11.5		Cologn
148	8/6/2021	3.1	2.4	5.1	5.2	54.0	2.5	2.3	6.0	5.9		Cologn
149	8/7/2021	2.7	3.3	5.6	5.9	52.5	2.3	2.2	5.5	5.3		Cologn
150	8/8/2021	3.0	4.2	6.4	6.3	56.4	3.1	3.0	6.9	6.9		Cologn

Page 143 of 271

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Page 5 of 16

Page 144 of 271

Annex 5

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Page 6 of 16

Manufacturer Type of instrumen	Palas GmbH t Fidas Smart 100										PM10 + PM2.5 Measured values in	n µg/m³ (ACT)
Serial-No.	SN 12248 / SN 122	50										
No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
	Duto	PM2.5	PM2,5	PM10	PM10	PM2.5/PM10	PM2,5	PM2,5	PM10	PM10	. tomain	
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
151	8/9/2021	2.9	2.8	6.3	6.5	44.4	2.8	2.7	6.7	6.5		Cologne
152	8/10/2021	4.1	3.9	7.3	7.9	52.7	4.0	3.7	8.5	8.0		Cologne
153	8/11/2021	6.3	5.7	9.4	9.6	62.9	6.8	6.2	11.6	10.4		Cologne
154	8/12/2021	9.7	9.5	16.1	16.4	59.1	9.1	8.5	15.0	14.5		Cologne
155	8/13/2021	8.9	9.7	15.8	15.8	58.9	9.2	8.6	15.7	14.6		Cologne
156	8/14/2021	9.3	8.3	17.4	17.1	50.9	7.1	6.8	13.4	13.3		Cologne
157	8/15/2021	9.0	8.0	15.7	15.6	54.2	6.8	6.5	13.1	13.1		Cologne
158	8/16/2021	4.2	4.1	10.3	11.5	37.9	4.5	4.3	10.4	10.5		Cologne
159	8/17/2021	7.9	7.6	15.4	15.1	50.7	9.6	9.1	14.6	14.3		Cologne
160	8/18/2021	4.2	4.7	8.4	6.7	59.2	5.2	4.9	9.0	8.7		Cologne
161	8/19/2021	3.8	4.3	7.5	8.0	52.6	4.3	4.1	8.2	8.0		Cologne
162	8/20/2021	4.0	4.4	7.6	9.3	49.9	4.3	4.0	8.1	7.7		Cologne
163	8/21/2021	6.9	7.0	10.8	11.1	63.6	5.5	5.2	9.9	9.7		Cologne
164	8/22/2021	5.7	5.1	8.8	9.7	58.0	6.1	5.7	10.7	10.4		Cologne
165	8/23/2021	7.1	7.5	11.5	11.7	62.9	8.8	8.2	12.7	12.0		Cologne
166	8/24/2021	5.6	5.5	8.6	9.2	62.2	4.1	3.9	8.0	7.9		Cologne
167	8/25/2021	7.7	6.7	12.9	13.1	55.7	5.1	4.9	10.9	10.6		Cologne
168	8/26/2021	3.9	4.0	7.4	8.1	51.3	4.4	4.2	8.4	8.3		Cologne
169	8/27/2021	3.6	3.4	8.4	8.6	41.5	3.5	3.4	9.0	8.6		Cologne
170	8/28/2021	4.5	4.3	9.3	8.4	49.5	6.3	6.0	9.8	9.9		Cologne
171	8/29/2021	4.5	3.9	8.1	7.6	53.8	5.0	4.8	8.3	8.4		Cologne
172	8/30/2021	10.5	10.0	16.7	16.6	61.6	12.3	11.6	17.1	16.6		Cologne
173	8/31/2021	14.0	13.2	21.0	20.3	65.7	15.2	14.5	19.9	19.5		Cologne
174	9/1/2021	10.5	10.2	19.4	18.7	54.3	12.0	11.4	17.4	16.6		Cologne
175	9/2/2021	7.6	7.5	12.6	13.1	59.0	10.9	10.4	15.7	14.9		Cologne
176	9/3/2021	9.1	8.3	13.7	14.0	62.9	9.4	9.0	14.0	13.8		Cologne
177	9/4/2021	11.5	11.2	16.6	16.6	68.3	12.2	11.5	16.7	16.3		Cologne
178	9/5/2021	11.3	11.0	15.3	15.2	73.0	11.7	11.0	15.2	15.0		Cologne
179	9/6/2021	14.3	13.9	21.0	21.0	67.0	13.7	13.0	19.6	19.0		Cologne
180	9/7/2021	12.5	12.7	19.4	20.0	64.1	12.4	11.7	18.4	17.7		Cologne

1490871_2022_936_21250983B_EN.docx

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Manufacturer Palas GmbH

Type of instrument Fidas Smart 100

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
INO.	Dale		PM2.5	PM10	PM10	PM2,5/PM10		PM2.5	PM10	PM10	Rellark	Test site
		PM2,5	,-	-	-	,	PM2,5	7 -	-			
101	0/0/0004	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
181	9/8/2021	11.5	11.3	17.6	17.7	64.8	10.9	10.4	17.3	16.8		Cologne II
182	9/9/2021	9.4	9.8	17.5	18.2	53.8	10.2	9.8	18.3	18.1		Cologne II
183	9/10/2021	4.8	4.7	9.3	9.0	52.0	4.8	4.6	9.7	9.3		Cologne II
184	9/11/2021	3.2	3.7	7.4	7.3	47.1	3.7	3.5	7.3	7.0		Cologne II
185	9/12/2021	5.8	5.8	10.1	10.2	57.5	5.6	5.3	9.3	8.9		Cologne II
186	9/13/2021	11.1	10.3	16.6	17.2	63.2	11.6	11.0	16.9	16.0		Cologne II
187	9/14/2021	9.0	8.7	14.8	15.0	59.4	9.1	8.6	15.9	15.3		Cologne II
188	9/15/2021	8.0	7.5	12.4	13.1	60.8	8.0	7.5	12.9	12.3		Cologne II
189	9/16/2021	4.3	4.3	9.4	9.8	44.7	4.1	4.0	8.9	8.8		Cologne II
190	9/17/2021	12.9	12.6	20.6	21.7	60.4	12.0	11.4	17.9	17.3		Cologne II
191	9/18/2021	11.3	10.4	14.7	15.2	72.2	12.2	11.6	16.4	15.7		Cologne II
192	9/19/2021	4.3	3.5	6.2	5.8	64.6	3.4	3.2	6.0	5.8		Cologne II
193	9/20/2021	7.3	6.7	11.4	11.7	60.8	7.8	7.5	13.7	13.3		Cologne II
194	9/21/2021	6.7	5.9	10.9	10.9	58.1	6.5	6.2	11.1	11.0		Cologne II
195	9/22/2021	10.7	10.3	17.8	18.4	58.0	9.8	9.3	16.8	15.6		Cologne II
196	9/23/2021	8.0	7.4	14.8	15.1	51.5	7.1	6.8	15.7	15.1		Cologne II
197	9/24/2021	5.8	5.6	12.0	12.9	45.8	7.6	7.3	14.0	13.5		Cologne II
198	9/25/2021	5.8	5.0	8.5	8.4	64.0	4.7	4.5	8.2	8.0		Cologne II
199	9/26/2021	8.7	7.8	12.1	12.5	66.9	8.0	7.6	12.9	12.2		Cologne II
200	9/27/2021	4.9	5.0	9.2	9.4	53.6	6.2	6.0	11.2	11.0		Cologne II
201	9/28/2021	3.8	3.8	10.5	10.7	35.3	4.1	4.1	9.7	10.1		Cologne II
202	9/29/2021	3.6	3.6	8.2	8.9	42.7	3.6	3.4	7.4	7.3		Cologne II
203	9/30/2021	4.1	3.3	8.6	7.9	44.6	3.8	3.7	7.9	7.9		Cologne II
204	10/1/2021	4.3	3.4	8.8	8.2	44.8	3.4	3.4	7.8	8.1		Cologne II
205	10/2/2021	3.4	3.5	5.2	6.7	58.1	3.0	2.9	5.9	6.2		Cologne II
206	10/3/2021	4.2	3.6	6.9	6.9	56.7	3.5	3.4	8.2	7.9		Cologne II
207	10/4/2021						2.6	2.5	5.9	5.9		Cologne II
208	10/5/2021						3.0	2.9	6.3	6.3		Cologne II
209	10/6/2021						2.9	2.7	6.0	5.8		Cologne II
210	10/7/2021						10.0	9.6	14.1	13.6		Cologne II

Page 145 of 271

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Page 7 of 16

Page 146 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀. Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Page 8 of 16

Manufacturer	Palas GmbH	

Annex 5

Type of instrument Fidas Smart 100

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2.5	PM2.5	PM10	PM10	PM2,5/PM10	PM2.5	PM2.5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
211	10/8/2021						8.3	7.8	12.6	12.4		Cologne II
212	10/9/2021						16.5	15.8	22.7	21.8		Cologne II
213	10/10/2021						14.4	13.7	18.9	18.7		Cologne II
214	10/11/2021						11.7	11.2	18.2	17.5		Cologne II
215	10/12/2021						6.3	6.0	10.2	10.0		Cologne II
216	10/13/2021						7.1	6.8	13.1	12.5		Cologne II
217	10/14/2021						8.7	8.3	13.9	13.6		Cologne II
218	10/15/2021	6.9	6.6	13.2	14.2	49.3	6.8	6.4	10.8	10.6		Cologne II
219	10/16/2021	10.3	10.1	16.5	16.7	61.3	10.6	9.9	17.2	15.5		Cologne II
220	10/17/2021	10.4	10.4	15.1	15.9	66.9	8.9	8.4	11.5	11.4		Cologne II
221	10/18/2021	12.3	11.6	16.0	16.2	74.3	11.3	10.9	14.3	14.3		Cologne II
222	10/19/2021	9.2	8.3	12.0	12.4	71.7	8.7	8.3	11.9	11.5		Cologne II
223	10/20/2021	5.4	5.4	10.2	9.3	54.6	5.7	5.5	9.4	9.4		Cologne II
224	10/21/2021	3.3	3.1	8.8	7.7	38.5	3.4	3.4	8.3	8.4		Cologne II
225	10/22/2021	4.5	4.7	12.6	11.3	38.6	5.0	4.9	10.5	10.3		Cologne II
226	10/23/2021	8.4	7.8	15.3	14.7	54.1	9.0	8.4	13.1	12.8		Cologne II
227	10/24/2021	6.1	6.8	11.6	10.9	57.3	7.1	6.7	9.4	9.3		Cologne II
228	10/25/2021	6.7	6.7	11.3	10.7	60.9	6.9	6.5	10.0	9.9		Cologne II
229	10/26/2021	4.4	4.3	8.6	8.4	50.5	4.5	4.3	7.4	7.4		Cologne II
230	10/27/2021	4.0	4.5	8.7	7.6	52.2	4.4	4.2	7.7	7.8		Cologne II
231	10/28/2021	11.9	12.4	16.9	16.1	73.8	12.4	11.9	15.6	15.0		Cologne II
232	10/29/2021	9.2	9.1	14.3	13.1	66.6	10.2	9.7	14.6	14.2		Cologne II
233	10/30/2021	6.9	7.0	11.9	10.3	62.7	7.2	6.9	10.7	11.0		Cologne II
234	10/31/2021	3.4	3.9	6.8	5.4	60.4	3.8	3.7	6.8	6.9		Cologne II
235	11/1/2021	3.4	3.1	8.9	7.5	39.2	3.6	3.5	7.3	7.5		Cologne II
236	11/2/2021	3.9	3.0	7.4	6.4	49.7	3.3	3.2	6.1	6.0		Cologne II
237	11/3/2021	6.6	6.6	10.4	9.7	65.8	6.4	6.1	9.3	9.1		Cologne II
238	11/4/2021	18.2	19.4	23.8	22.6	80.9	17.7	16.8	20.3	19.5		Cologne II
239	11/5/2021	13.8	14.7	21.0	20.1	69.5	13.2	12.7	17.8	17.2		Cologne II
240	11/6/2021	5.9	6.5	10.6	10.3	59.3	6.9	6.5	9.4	9.4		Cologne II

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Manufacturer Palas GmbH

Type of instrument Fidas Smart 100

Serial-No. SN 12248 / SN 12250

	1											
No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
241	11/7/2021	5.0	5.2	10.9	11.4	45.9	5.6	5.4	9.7	9.7		Cologne II
242	12/3/2021	6.5	6.8	14.7	13.8	46.8	6.4	6.0	11.8	11.7		Bornheim
243	12/4/2021	4.0	4.8	8.3	7.3	56.1	4.6	4.3	10.6	10.5		Bornheim
244	12/5/2021	5.2	4.7	8.5	7.6	61.2	4.2	3.9	6.9	6.9		Bornheim
245	12/6/2021	9.9	9.9	15.1	14.5	66.7	9.0	8.3	13.1	12.7		Bornheim
246	12/7/2021	5.4	5.1	13.9	12.2	40.3	6.0	5.7	14.4	14.0		Bornheim
247	12/8/2021	5.5	5.8	13.2	12.5	44.0	4.6	4.4	10.1	10.3		Bornheim
248	12/9/2021	5.9	6.9	13.6	12.6	48.8	5.5	5.1	11.4	11.0		Bornheim
249	12/10/2021	6.3	6.1	11.9	10.8	54.5	6.7	6.1	10.0	9.2		Bornheim
250	12/11/2021	15.9	15.5	23.5	23.1	67.3	13.5	12.4	17.5	16.3		Bornheim
251	12/12/2021	4.3	3.7	9.5	9.5	42.5	5.8	5.6	14.4	14.3		Bornheim
252	12/13/2021	3.9	3.5	10.5	9.8	36.5	3.0	2.9	8.7	8.7		Bornheim
253	12/14/2021	7.2	6.7	13.7	13.4	51.1	6.4	5.9	11.5	10.6		Bornheim
254	12/15/2021	6.5	5.1	12.4	12.8	46.0	5.4	5.1	10.3	9.8		Bornheim
255	12/16/2021	26.7	26.4	41.1	40.5	65.1	24.8	22.9	31.0	28.7		Bornheim
256	12/17/2021	15.8	15.0	23.8	22.6	66.4	12.5	11.6	16.9	16.0		Bornheim
257	12/18/2021	11.5	10.4	15.6	14.7	71.9	10.4	9.7	13.0	12.4		Bornheim
258	12/19/2021	9.4	7.6				8.4	7.7	12.0	11.2	tech. issue ref.	Bornheim
259	12/20/2021	9.9	7.4				8.6	8.1	14.1	14.6		Bornheim
260	12/21/2021	19.3	20.8				16.0	14.7	19.8	19.5		Bornheim
261	12/22/2021	21.5	21.9	28.0	26.6	79.6	18.1	16.3	18.9	18.1		Bornheim
262	12/23/2021	20.4	20.3	26.2	25.8	78.2	18.0	16.3	22.7	20.8		Bornheim
263	12/24/2021	7.3	7.7	18.6	17.1	41.9	8.0	7.7	23.5	22.8		Bornheim
264	12/25/2021	5.4	5.0	7.4	7.6	69.7	5.0	4.6	7.0	6.8		Bornheim
265	12/26/2021			10.4	9.9		7.9	7.1	8.9	8.1		Bornheim
266	12/27/2021	6.0	6.2	8.5	8.7	71.0	5.4	4.9	7.4	6.8		Bornheim
267	12/28/2021	3.5	4.3	10.2	10.3	38.0	4.5	4.4	9.3	9.3		Bornheim
268	12/29/2021	3.2	3.3	8.3	8.4	39.1	3.7	3.5	7.3	7.4		Bornheim
269	12/30/2021	3.1	2.9				2.9	2.8	6.9	7.1	tech. issue ref.	Bornheim
270	12/31/2021	3.6	2.9				2.6	2.4	5.0	5.1		Bornheim

Page 147 of 271

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Page 9 of 16

Page 148 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM_{10.} Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Page 10 of 16

Manufacturer	Palas GmbH

Annex 5

Type of instrument Fidas Smart 100

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
271	1/1/2022	4.1	4.3				4.5	4.3	7.1	7.1		Bornheim
272	1/2/2022	5.5	4.8				5.1	4.8	9.8	9.5		Bornheim
273	1/3/2022	2.6	1.9				4.9	4.8	10.8	10.8		Bornheim
274	1/4/2022	2.7	2.5				3.2	3.1	7.2	7.3		Bornheim
275	1/5/2022	4.6	4.2				5.4	5.2	9.6	10.1		Bornheim
276	1/6/2022	7.6	7.7	20.7	20.6	37.2	10.5	10.1	25.4	25.5		Bornheim
277	1/7/2022	4.2	3.4				4.4	4.1	11.5	11.6	tech. issue ref.	Bornheim
278	1/8/2022	4.5	4.4	9.8	10.1	44.8	5.9	5.5	18.0	16.9		Bornheim
279	1/9/2022	4.9	4.8	11.2	11.5	42.7	5.7	5.4	11.6	11.5		Bornheim
280	1/10/2022	12.1	11.3	20.7	20.8	56.3	11.7	11.0	18.2	17.5		Bornheim
281	1/11/2022	13.1	12.4	16.3	16.6	77.4	12.0	10.9	14.3	13.3		Bornheim
282	1/12/2022	17.0	16.2	25.3	25.0	65.8	16.2	15.2	23.3	23.1		Bornheim
283	1/13/2022	17.9	16.9	24.5	23.3	72.7	15.1	13.9	20.1	18.7		Bornheim
284	1/14/2022	21.0	20.5	27.8	26.2	76.8	19.2	17.8	22.2	21.5		Bornheim
285	1/15/2022	10.7	10.4	11.7	11.7	90.0	10.0	9.0	11.1	10.1		Bornheim
286	1/16/2022	13.3	13.1	17.4	16.7	77.2	12.9	12.0	17.7	16.8		Bornheim
287	1/17/2022	15.1	14.6	25.2	22.6	62.1	17.7	16.7	30.6	29.6		Bornheim
288	1/18/2022	9.7	9.7	21.9	20.0	46.4	11.1	10.5	18.6	18.6		Bornheim
289	1/19/2022	8.9	9.3	23.9	21.8	39.7	11.2	10.5	27.8	26.6		Bornheim
290	1/20/2022	5.3	5.4	19.8	17.9	28.3	8.9	8.6	20.9	21.2		Bornheim
291	1/21/2022	8.2	8.1	23.2	21.0	36.9	11.6	11.0	30.6	30.1		Bornheim
292	1/22/2022	16.5	16.1	27.8	26.4	60.2	18.5	17.3	26.3	24.9		Bornheim
293	1/23/2022	19.8	21.8	26.5	29.2	74.9	19.5	17.8	21.7	20.8		Bornheim
294	1/24/2022	7.9	7.9	12.8	13.0	60.7	8.6	7.8	12.4	12.4		Bornheim
295	1/25/2022	18.8	18.5	29.3	28.8	64.2	18.1	16.8	26.2	24.5		Bornheim
296	1/26/2022	27.7	27.6	37.3	36.2	75.1	25.1	23.5	30.4	28.5		Bornheim
297	1/27/2022	9.9	9.5	19.2	18.6	51.3	12.6	11.8	29.1	27.9		Bornheim
298	1/28/2022	7.6	6.8	21.1	20.1	35.1	8.7	8.3	18.1	18.1		Bornheim
299	1/29/2022	4.4	3.3	9.4	9.9	39.6	4.8	4.6	9.5	9.5		Bornheim
300	1/30/2022	7.9	7.0	23.8	23.7	31.4	10.5	10.1	20.9	21.1		Bornheim

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Annex 5

Measured values from field test sites, related to actual conditions

Manufacturer	Palas GmbH

Type of instrument Fidas Smart 100

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
301	1/31/2022	4.7	4.5	12.8	13.8	34.5	7.5	7.2	13.9	14.1		Bornhein
302	2/1/2022	3.9	4.0	13.6	13.3	29.3	7.0	6.8	16.3	16.0		Bornhein
303	2/2/2022	8.3	7.7	22.4	22.3	35.9	10.8	10.3	17.8	17.9		Bornheir
304	2/3/2022	4.9	5.4	12.0	11.0	44.7	5.5	5.2	10.6	10.2		Bornheir
305	2/4/2022	3.0	3.0	7.0	8.4	38.9	3.3	3.1	8.2	7.8		Bornheir
306	2/5/2022	4.0	4.2	9.1	9.4	44.3	4.3	4.1	8.0	7.9		Bornheir
307	2/6/2022	1.6	1.9	4.2	4.9	38.9	2.4	2.2	5.3	5.4		Bornheir
308	2/7/2022	4.3	4.0	15.3	14.4	28.1	6.1	5.8	15.5	16.2		Bornheir
309	2/8/2022	3.0	2.8	9.6	8.6	31.6	3.0	3.0	9.2	9.6		Bornheir
310	2/9/2022	6.6	6.4	14.5	14.1	45.6	6.3	5.8	12.2	11.8		Bornhei
311	2/10/2022	8.2	8.3	15.9	16.0	51.4	9.0	8.5	16.0	15.6		Bornhei
312	2/11/2022	7.0	7.1	17.0	17.1	41.2	7.7	7.3	15.2	15.1		Bornhei
313	2/12/2022	9.0	8.4	15.2	16.1	55.6	8.5	7.9	12.7	12.4		Bornhei
314	2/13/2022	8.3	8.8	12.6	12.6	67.6	8.7	8.0	11.6	11.3		Bornhei
315	2/14/2022	3.5	4.0	10.6	10.7	35.3	4.1	3.8	10.5	10.1		Bornhei
316	2/15/2022	3.1	4.2	10.9	10.8	33.4	4.5	4.2	10.1	9.8		Bornhei
317	2/16/2022	1.2	1.1	7.1	6.8	16.4	2.1	2.0	10.0	9.3		Bornhei
318	2/17/2022	4.7	4.6	16.1	14.4	30.6	7.5	7.1	16.2	16.1		Bornhei
319	2/18/2022	3.9	3.1	12.0	11.1	30.5	5.2	4.9	11.5	11.1		Bornhei
320	2/19/2022	2.2	3.1	9.2	8.4	30.3	4.0	3.9	9.1	9.3		Bornhei
321	2/20/2022	2.5	2.1	7.3	7.0	31.8	3.4	3.2	7.0	6.9		Bornhei
322	2/21/2022	2.8	3.1	9.4	9.4	31.2	4.6	4.4	9.9	9.6		Bornhei
323	2/22/2022	4.9	4.5	17.0	16.7	28.0	7.5	7.6	15.2	15.3		Bornhei
324	2/23/2022	5.8	5.9	14.7	15.3	38.9	5.9	7.4	11.8	12.2		Bornhei
325	2/24/2022	3.6	3.7	8.6	8.9	41.9	3.6	4.0	8.1	8.1		Bornhei
326	2/25/2022	5.2	4.5	17.2	16.4	28.8	7.2	7.2	19.6	20.1		Bornhei
327	2/26/2022	9.3	8.1	20.0	19.0	44.4	10.9	10.6	17.7	17.9		Bornhei
328	2/27/2022	7.7	6.7	11.2	10.0	67.9	7.1	7.0	9.1	9.3		Bornhei
329	2/28/2022	10.8	10.8	16.3	15.1	68.8	11.4	10.9	14.2	14.2		Bornheir
330	3/1/2022	14.9	14.0	20.2	19.7	72.3	14.6	14.0	19.1	19.0		Bornhei

Page 149 of 271

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Page 11 of 16

Page 150 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀ Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Page 12 of 16

Manufacturer	Palas GmbH	

Annex 5

Type of instrument Fidas Smart 100

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2.5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
331	3/2/2022	15.8	16.1	25.1	24.3	64.6	16.4	15.7	23.2	23.2		Bornheim
332	3/3/2022	17.9	17.8	26.2	25.5	69.0	18.6	17.5	23.6	23.0		Bornheim
333	3/4/2022	19.2	19.0	28.2	27.7	68.5	20.5	19.3	25.7	25.4		Bornheim
334	3/5/2022	18.0	18.1	22.7	21.6	81.4	18.6	17.5	20.8	20.4		Bornheim
335	3/6/2022	19.0	19.2	25.2	24.2	77.2	19.7	18.3	22.3	22.1		Bornheim
336	4/9/2022	5.6	5.4	12.2	11.2	46.8	5.4	5.1	10.0	10.2		Bonn
337	4/10/2022	7.4	6.8	11.7	11.4	61.2	5.9	5.6	9.1	9.0		Bonn
338	4/11/2022	7.6	6.4	12.2	12.0	58.1	6.4	6.0	11.5	11.4		Bonn
339	4/12/2022	7.3	6.9	13.7	14.0	51.2	6.5	5.8	17.1	13.7		Bonn
340	4/13/2022	13.7	13.7	24.9	26.1	53.8	11.3	10.8	21.5	21.6		Bonn
341	4/14/2022	16.6	16.4	23.8	23.7	69.6	15.9	15.2	20.9	21.0		Bonn
342	4/15/2022	14.8	13.8	18.9	19.0	75.3	13.9	13.1	17.3	16.7		Bonn
343	4/16/2022	6.9	5.0	7.3	7.5	80.4	5.7	5.4	8.6	8.3		Bonn
344	4/17/2022	5.5	5.1	7.6	7.7	69.3	4.9	4.6	7.3	7.5		Bonn
345	4/18/2022	6.4	7.6	10.3	9.8	69.8	5.3	5.0	8.3	8.3		Bonn
346	4/19/2022	5.3	6.7	11.6	11.2	52.6	5.0	4.8	10.0	11.0		Bonn
347	4/20/2022	5.7	6.2	12.6	13.1	46.3	4.4	4.3	10.2	11.5		Bonn
348	4/21/2022	6.2	7.0	13.1	13.3	49.8	5.2	4.9	10.6	10.9		Bonn
349	4/22/2022	9.0	9.9	14.8	14.4	64.6	9.8	9.3	14.9	14.5		Bonn
350	4/23/2022	11.1	11.8	15.9	16.0	71.8	12.5	11.9	16.6	16.4		Bonn
351	4/24/2022	9.4	11.6	13.5	14.5	74.8	9.4	9.0	12.7	13.1		Bonn
352	4/25/2022	8.8	10.9	13.8	15.0	68.5	9.5	9.1	12.6	12.2		Bonn
353	4/26/2022	13.3	16.1	20.5	20.2	72.2	13.8	13.4	16.7	16.5		Bonn
354	4/27/2022	12.8	15.2	23.2	23.6	59.9	14.3	13.7	19.6	19.3		Bonn
355	4/28/2022	15.8	18.3	27.3	27.1	62.6	16.2	15.5	22.6	22.0		Bonn
356	4/29/2022	16.6	19.1	31.9	30.7	57.1	15.8	15.0	23.4	22.8		Bonn
357	4/30/2022	8.9	9.1	15.7	15.8	57.1	9.4	8.9	13.6	13.4		Bonn
358	5/1/2022	12.6	13.9	21.5	20.4	63.2	13.1	12.2	17.5	16.9		Bonn
359	5/2/2022	13.9	14.5	23.5	22.3	62.1	14.7	14.0	20.9	20.1		Bonn
360	5/3/2022	13.1	13.4	24.6	23.3	55.1	14.1	13.5	22.0	21.7		Bonn

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Annex 5

Measured values from field test sites, related to actual conditions

Manufacturer	Palas GmbH

Type of instrument Fidas Smart 100

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
361	5/4/2022	13.7	13.4	27.8	27.2	49.5	14.3	13.7	22.8	22.5		Bonn
362	5/5/2022	13.8	12.9	28.3	28.4	47.1	12.7	12.2	21.3	20.9		Bonn
363	5/6/2022	15.4	14.0	27.5	26.2	54.8	16.1	15.3	23.8	22.9		Bonn
364	5/7/2022	13.9	12.9	21.7	20.9	62.9	16.4	15.6	22.3	21.7		Bonn
365	5/8/2022	8.9	8.8	15.7	15.3	57.0	10.7	10.3	15.0	14.7		Bonn
366	5/9/2022	8.0	8.4	15.8	15.4	52.6	7.4	7.1	13.8	14.0		Bonn
367	5/10/2022	12.2	11.8	19.4	19.3	61.8	9.6	9.2	19.8	20.0		Bonn
368	5/11/2022	11.1	12.2	19.7	19.7	59.0	7.9	7.7	21.9	21.1		Bonn
369	5/12/2022	7.3	6.9	14.1	14.4	49.5	5.1	5.0	12.8	12.8		Bonn
370	5/13/2022	6.3	7.2	16.8	15.8	41.2	4.5	4.3	12.0	12.5		Bonn
371	5/14/2022	9.2	10.0	19.0	17.8	52.0	6.9	6.7	13.2	14.2		Bonn
372	5/15/2022	10.2	10.8	18.1	16.8	60.3	8.5	8.1	14.1	14.5		Bonn
373	5/16/2022	7.9	8.1	15.7	16.2	50.0	8.0	7.7	16.5	16.5		Bonn
374	5/17/2022	4.8	5.3	10.5	10.9	47.1	5.8	5.6	11.8	11.6		Bonn
375	5/18/2022	7.5	8.3	12.8	13.5	60.4	5.5	5.3	12.8	12.4		Bonn
376	5/19/2022	7.7	8.7	16.5	17.6	48.1	7.3	7.0	19.1	18.7		Bonn
377	5/20/2022	6.8	8.2	13.9	14.1	53.4	10.8	10.4	17.2	17.0		Bonn
378	5/21/2022	3.7	3.7	8.0	7.8	47.1	4.1	3.9	7.9	8.0		Bonn
379	5/22/2022	3.6	4.7	9.5	10.0	42.7	4.8	4.6	8.5	8.6		Bonn
380	5/23/2022	5.1	6.2	11.4	11.5	48.9	6.5	6.2	13.2	13.2		Bonn
381	5/24/2022	0.6	2.6	6.0	7.2	24.8	3.2	3.1	7.9	8.0		Bonn
382	5/25/2022	2.6	3.1	6.3	6.3	45.4	2.1	2.0	6.6	6.8		Bonn
383	5/26/2022	2.0	2.7	6.4	7.3	34.5	3.3	3.1	7.0	7.0		Bonn
384	5/27/2022	3.5	3.4	7.9	8.6	42.1	4.1	3.9	9.2	9.1		Bonn
385	5/28/2022	3.9	3.6	9.8	10.2	37.4	4.4	4.2	9.2	9.4		Bonn
386	5/29/2022	3.0	1.8	5.5	5.6	42.9	3.5	3.3	6.6	6.9		Bonn
387	5/30/2022	5.4	5.2	9.1	10.0	55.7	6.7	6.4	10.9	11.0		Bonn
388	5/31/2022	5.1	5.4	9.1	10.0	54.5	5.7	5.4	10.4	10.3		Bonn
389	6/1/2022	4.2	3.8	7.4	7.6	53.4	3.6	3.5	7.8	7.8		Bonn
390	6/23/2022			35.1	34.5				32.0	29.7		Cologne

Page 151 of 271

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Page 13 of 16

Page 152 of 271

Annex 5

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Page 14 of 16

pe of instrumer	nt Fidas Smart 100										PM10 + PM2.5 Measured values i	n µg/m³ (ACT)
rial-No.	SN 12248 / SN 1225	50										
No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
391	6/24/2022			8.4	8.2				11.0	10.1		Cologne II
392	6/25/2022			10.7	10.3				10.9	10.4		Cologne II
393	6/26/2022			12.1	12.7				11.3	10.6		Cologne II
394	6/27/2022			13.6	12.2				13.2	12.1		Cologne II
395	6/28/2022			15.3	15.5				15.9	14.4		Cologne II
396	6/29/2022			35.6	33.4				30.3	27.9		Cologne II
397	6/30/2022			20.6	19.6				20.8	18.6		Cologne II
398	7/1/2022			9.1	8.4				9.4	8.9		Cologne II
399	7/2/2022			16.5	15.3				15.0	13.6		Cologne II
400	7/3/2022			10.6	9.4				9.9	9.1		Cologne II
401	7/4/2022			8.7	7.8				7.9	7.2		Cologne II
402	7/5/2022			12.1	13.2				12.8	11.4		Cologne II
403	7/6/2022			10.0	9.7				10.3	9.1		Cologne II
404	7/7/2022			10.9	11.9				12.4	10.9		Cologne II
405	7/8/2022			9.0	10.3				10.5	9.6		Cologne II
406	7/9/2022			9.2	10.6				11.5	10.4		Cologne II
407	7/10/2022			6.5	8.0				8.4	7.9		Cologne II
408	7/11/2022			5.6	8.5				8.8	7.8		Cologne II
409	7/12/2022			18.8	21.1				17.7	15.9		Cologne II
410	7/13/2022			24.5	25.5				21.5	19.7		Cologne II
411	7/14/2022			12.8	12.8				13.8	12.3		Cologne II
412	7/15/2022			9.0	9.2				8.9	8.2		Cologne II
413	7/16/2022			13.8	14.1				13.2	11.5		Cologne II
414	7/17/2022			25.8	25.5				19.7	17.9		Cologne II
415	7/18/2022			33.6	32.5				27.9	25.0		Cologne II
416	7/19/2022			44.6	44.3				42.9	40.2		Cologne II
417	7/20/2022			26.5	27.1				32.3	30.3		Cologne II
418	7/21/2022			10.0	11.1				12.7	11.9		Cologne II
419	7/22/2022			17.4	16.3				17.2	16.0		Cologne II
420	7/23/2022			15.4	14.3				16.9	14.0		Cologne II

Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Manufacturer Palas GmbH

Type of instrument Fidas Smart 100

Serial-No. SN 12248 / SN 12250

No.	Date	Ref. 1	Ref. 2	Ref. 1	Ref 2.	Ratio	SN 12248	SN 12250	SN 12248	SN 12250	Remark	Test site
		PM2,5	PM2,5	PM10	PM10	PM2,5/PM10	PM2,5	PM2,5	PM10	PM10		
		[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[%]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]		
421	7/24/2022			19.7	18.3				16.4	15.0		Cologne I
422	7/25/2022			19.8	18.2				18.6	17.2		Cologne I
423	7/26/2022			12.1	12.1				13.0	12.3		Cologne
424	7/27/2022			16.2	15.7				12.1	10.7		Cologne
425	7/28/2022			26.7	25.4				24.5	23.0		Cologne
426	7/29/2022			21.4	20.8				20.1	17.9		Cologne
427	7/30/2022			14.7	13.4				16.6	15.9		Cologne
428	7/31/2022			11.2	10.3				11.7	11.2		Cologne
429	8/1/2022			6.3	6.3				8.0	7.4		Cologne
430	8/2/2022			22.2	21.1				18.2	16.5		Cologne
431	8/3/2022			15.0	13.8				15.0	13.7		Cologne
432	8/4/2022			34.0	31.2				31.1	28.0		Cologne
433	8/5/2022			10.3	9.0				11.4	10.8		Cologne
434	8/6/2022			11.2	9.7				9.5	8.8		Cologne
435	8/7/2022			17.4	16.1				13.2	12.1		Cologne
436	8/8/2022			15.1	13.5				14.5	12.9		Cologne
437	8/9/2022			21.1	20.0				19.9	17.6		Cologne
438	8/10/2022			34.2	33.0				29.7	26.5		Cologne
439	8/11/2022			48.5	47.5				40.8	37.8		Cologne
440	8/12/2022			37.8	37.2				37.1	34.4		Cologne
441	8/13/2022			33.9	33.0				31.4	28.4		Cologne
442	8/14/2022			24.4	23.8				23.3	21.3		Cologne
443	8/15/2022			18.0	17.5				18.3	17.1		Cologne
444	8/16/2022			23.5	23.1				25.9	23.0		Cologne
445	8/17/2022			21.5	21.0				22.3	20.4		Cologne
446	8/18/2022			20.0	19.6				21.1	19.5		Cologne
447	8/19/2022			16.6	16.3				20.5	19.2		Cologne
448	8/20/2022			13.2	12.4				13.8	12.8		Cologne
449	8/21/2022			12.9	12.6				11.1	10.9		Cologne
450	8/22/2022			26.3	23.7				19.4	17.7		Cologne

Page 153 of 271

PM10 + PM2.5

Measured values in µg/m³ (ACT)

Page 15 of 16

Page 154 of 271

Palas GmbH

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and $PM_{10,}$ Report no.: 936/21250983/B

Measured values from field test sites, related to actual conditions

Page 16 of 16

ype of instrument Fidas Smart 100)									PM10 + PM2.5 Measured values in	ι μg/m³ (ACT)
erial-No. SN 12248 / SN	12250										
No. Date	Ref. 1 PM2,5 [μg/m³]	Ref. 2 PM2,5 [μg/m³]	Ref. 1 ΡΜ10 [μg/m³]	Ref 2. ΡΜ10 [μg/m³]	Ratio PM2,5/PM10 [%]	SN 12248 PM2,5 [µg/m³]	SN 12250 PM2,5 [μg/m³]	SN 12248 PM10 [µg/m³]	SN 12250 ΡΜ10 [μg/m³]	Remark	Test site
451 8/23/2022 452 8/24/2022 453 8/25/2022 454 8/26/2022 455 8/27/2022 456 8/28/2022			20.4 32.2 34.0 19.3 11.9 16.9	18.0 28.9 31.5 16.0 11.1 15.9				17.3 27.1 33.9 18.2 11.2 14.1	15.8 24.1 30.7 16.9 10.5 13.1		Cologne I Cologne I Cologne I Cologne I Cologne I

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 155 of 271

Appendix 2:

Methods used for filter weighing

Performance of weighing and handling of the filters

Weighing takes place in an air-conditioned weighing chamber. Conditions are as follows: 20 °C \pm 1 °C and 45% \pm 50% rel. humidity and thus meet the requirements of EN 12341.

Filters for the field test are weighed manually. For further processing, filters incl. the control filters are placed on sieves to avoid cross-loading.

Conditions for initial and back weighing had previously been defined and are in line with the specifications of standard EN 12341.

Before sampling = pre-weighing	After sampling = post-weighing
Conditioning > 48 hours	Conditioning > 48 hours
Filter weighing	Filter weighing
Repeated conditioning > 12 hours	Repeated conditioning 24 to 72 hours
Filter weighing and immediate packing	Filter weighing

Blank value samples both from the weighing chamber and the field are used for the purpose of quality assurance. In doing so, the requirements of standard EN 12341 are taken into account.

Weighed filters are kept separately in polystyrene boxes for transports to and from the measurement site and for storage. The box is not opened until the filter is inserted in the filter cartridge. Unloaded filters shall be stored no longer than 2 months before sampling. Should this period be exceeded, initial weighing will be repeated.

Loaded filters must be brought to the weighing chamber within a month. They are then weighed within a month.

Page 156 of 271

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Appendix 3 CE Certificate and Certificate of Accreditation

	EU-Konformit	ätserklärung	PALAS							
	Der Hersteller									
	Palas GmbH Greschbachstraße 3 b 76229 Karlsruhe Deutschland erklärt hiermit in alleiniger Verantwortung, dass die Produkte									
	Aerosolspektrometer: AQ Guard, AQ Guard Smart 1000 / 1100 / 1200 / 2000									
	Feinstaubmessgeräte: Fidas Smart 100 / 100 E									
	mit den Bestimmungen folg	jender Richtlinie übereinstimme	n:							
	2014/53/EU Funkanlagen-Richtlinie (RED) 2011/65/EU RoHS									
	Die Schutzziele folgender Richtlinien werden eingehalten:									
	2014/35/EU Niederspannungsrichtlinie 2014/30/EU EMV-Richtlinie									
	Folgende harmonisierte Normen wurden angewendet:									
	DIN EN 61010-1:2020-03 Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte - Teil 1: Allgemeine Anforderungen (IEC 61010-1:2010 + COR:2011 + A1:2016, modifiziert + A1:2016/COR1:2019)									
	DIN EN 61326-1:2013-07 Elektrische Mess-, Steuer-, Regel- und Laborgeräte; EMV-Anforde Teil 1: Allgemeine Anforderungen (IEC 61326-1:2012)									
	DIN EN IEC 63000:2019-05 Technische Dokumentation zur Beurteilung von Elektro- und Elektronikgeräten hinsichtlich der Beschränkung gefährlicher Stoffe									
	Karlsruhe, 05.09.2022 DrIng. Maximilian Weiß Geschäftsführer									
	www.palas.de		PALASCOUNTS							
Figure 65:	CE Certificate									

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 157 of 271

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

TÜV Rheinland Energy GmbH

mit seinen in der Urkundenanlage aufgeführten Messstellen und Standorten

die Kompetenz nach DIN EN ISO/IEC 17025:2018 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Bestimmung (Probenahme und Analytik) von anorganischen und organischen gas- oder partikel-förmigen Luftinhaltsstoffen im Rahmen von Emissions- und Immissionsmessungen; Probenahme von luftgetragenen polyhalogenierten Dibenzo-p-Dioxinen und Dibenzofuranen bei Emissionen und Immissionen; Probenahme von faserförmigen Partikeln bei Emissionen und Immissionen; Ermittlung von gas- oder partikelförmigen Luftinhaltsstoffen mit kontinuierlich arbeitenden Messgeräten; Bestimmung von Geruchsstoffen in Luft; Kalibrierungen und Funktionsprüfungen kontinuierlich arbeitender Messgeräte für Luftinhaltsstoffe einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung; Feuerraummessungen; Eignungsprüfungen von automatisch arbeitenden Emissions- und Immissionsmesseinrichtungen einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung; Ermittlung der Emissionen und Immissionen von Geräuschen; Bestimmung von Geräusche in der Nachbarschaft; Ermittlung von Geräuschen und Vibrationen am Arbeitsplatz; akustische und schwingungstechnische Messungen im Eisenbahnwesen; Bestimmung von Schallleistungspegeln von zur Verwendung im Freien vorgesehenen Geräten und Maschinen nach Richtlinie 2000/14/EG und Konformitätsbewertungsverfahren; Schornsteinhöhenberechnung und Immissionsprognose auf der Grundlage der Technischen Anleitung zur Reinhaltung der Luft und der Geruchsimmissions-Richtlinie und der VDI 3783 Blatt 13; Windenergieanlagen: Bestimmung von Windpotential, Energieerträgen, Standorterträgen und Standortgüte nach EEG, standortbezogenen Turbulenzcharakteristika und Extremwinde; Schallimmissionsprognosen, Schattenwurfimmissionsberechnung und Sichtbarkeitsbestimmung; Probenahme und mikrobiologische Untersuchungen von Nutzwasser gemäß §3 Absatz 8 42. BimSchV; physikalische, physikalisch-chemische und mikrobiologische Untersuchungen von Wasser (Abwasser, Wasser aus Rückkühlwerken sowie raumlufttechnischen Anlagen); Probenahme von Abwasser; mikrobiologische und ausgewählte chemische Untersuchungen gemäß Trinkwasserverordnung; Probenahme von Roh- und Trinkwasser; ausgewählte mikrobiologische Untersuchungen von Bedarfsgegenständen und kosmetischen Mitteln; Probenahme anorganischer faserförmiger Partikel sowie von partikel- und gasförmigen luftverunreinigenden Stoffen in der Innenraumluft; ausgewählte mikrobiologische Untersuchungen in Innenräumen; Ermittlung von Aerosolen und Faserstäuben, anorganischen und organischen Gasen und Dämpfen sowie ausgewählten Parametern und/oder in ausgewählten Gebieten bei Arbeitsplatzmessungen gemäß Gefahrstoffverordnung §7, Abs. 10; Modul Immissionsschutz

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 17.06.2020 mit der Akkreditierungsnummer D-PL-11120-02. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 48 Seiten.

Registrierungsnummer der Urkunde: D-PL-11120-02-00

Berlin, 17.06.2020

Abteilungsleiterin Die Urkunde samt Urkundenanlage gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieden Der jeweils aktuelle Stand des Geltungsbereiches der Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle GmbH (DAkkS) zu entnehmen. https://www.dakks.de/content/datenbank-akkreditierter-stellen

/ what this

Im Auftrag Dipl.-Ing. Andrea Valo

Siehe Hinweise auf der Rückseite

Figure 66: Ce

Certificate of accreditation according to EN ISO/IEC 17025:2005

Page 158 of 271

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter PM_{2.5} and PM₁₀, Report no.: 936/21250983/B

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Standort Braunschweig Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAkkS). Ausgenommen davon ist die separate Weiterverbreitung des Deckblattes durch die umseitig genannte Konformitätsbewertungsstelle in unveränderter Form.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI. I S. 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. L 218 vom 9. Juli 2008, S. 30). Die DAkkS ist Unterzeichnerin der Multilateralen Abkommen zur gegenseitigen Anerkennung der European co-operation for Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an.

Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org ILAC: www.ilac.org

IAF: www.iaf.nu

Figure 67: Certificate of accreditation according to EN ISO/IEC 17025:2005 - page 2

TÜV Rheinland Energy GmbH Air Pollution Control

Report on the performance test of the Fidas Smart 100 / Fidas Smart 100 E ambient air measuring system manufactured by Palas GmbH for particulate matter $PM_{2.5}$ and PM_{10} , Report no.: 936/21250983/B

Page 159 of 271

Appendix 4: Operation manual